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4 Introduction

1 Introduction

This paper contains a reasonably thorough analysis of the filters used in the Korg
MS10 and MS20, concentrating for the most part on the low-pass variants of those
filters. The filters have a reputation for having lots of ‘character’, and if we attempt
to attribute this to some facet of the filters’ topology, we immediately run into much
confusion: filters in the MS10 and early MS20s were built around a Korg-proprietary,
resin-sealed device, the ‘Korg35’; in later MS20s, the filter was re-designed around
the LM13600 operational transconductance amplifier (OTA). Korg finally divulged the
circuitry inside the Korg35 in 2000, confirming that the filters’ topology was indeed
one of the standard Sallen-Key types, as had been suspected for some time; the later
OTA-based filter however is basically two cascaded, buffered first-order sections, which
whilst still being a second-order filter, does not share the same Sallen-Key topology of
the original.

There are several purposes to my study. Firstly there is the mechanism by which
the transistors in the Korg35 chip are used to provide voltage-control of the filter cut-off
frequency: barring simple substitution of vactrols for resistors, adding voltage-control
to a standard filter topology such as the Sallen-Key types may require a good deal
of ingenuity. Korg have demonstrated such ingenuity by biasing two transistors in the
Korg35 in the reverse saturation mode, thus essentially using them as current-controlled
resistors, and I was keen to better understand how on earth this works.

Secondly, when mention is made of the MS20 filter and its “legendary sound”, it
is often unclear just which of the two filter types is being referred to: do they have
such similar aural characteristics that it is immaterial which one is actually meant?
It will be shown in this paper that, analytically at least, the two filter designs have
similarities, but there are also differences, and these are shown too. Ultimately the best
test of their similarity/difference will be to listen to actual hardware: this will form the
next phase in my study, that of building copies of both types of filter.

Schematics and simulation: all schematics in this document have been produced
in SIMetrix, [11], a SPICE-type simulation package. Where possible I have used ‘rec-
ognized’ models for the Japanese transistors: I was unable to find one for the 2SK94
JFET, and so have used a BF245A instead, as it has a similar threshold voltage range.
I have generated my own OTA symbol, whose pin-outs are
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Figure 1: MS10 version of the Korg35-based filter

as when I imported the National LM13600/13700 models, the symbol SIMetrix assigned
was a bit ‘generic’.

2 Filter Schematics, Structures and Transfer Functions

Figures 1 and 2 are schematics for the two filter types: the earlier Korg35-based one in
the former, and the later OTA-based filter in the latter. The Korg35-based schematic
takes the MS10 component values, mainly for the simple expedient that the copy of
the MS10 schematic I found on the web was easier to read than that which I found
for the MS20. I’ve not yet seen either an MS10 or MS20 in the flesh, but it seems
the later OTA-based filter was constructed around a ‘daughterboard’ PCB, the ‘KLM-
307’, for which I also found a readable schematic. In both figures I have tried to keep
the nomenclature of the discrete components as the original schematics, for ease of
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Figure 2: OTA-based version of later MS20s
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Figure 3: Sallen-Key low-pass structure of the Korg35-based filter

reference.

In Figure 1: V3 is the input voltage; V4 the cut-off frequency control voltage; the
output is taken at C19/R62; VR13 is the resonance control pot. In Figure 2: V2 is the
input; V4 the cut-off voltage (V5 is an offset-adjustment for the cut-off); the output is
C7/R29; VR1 is the resonance pot.

One of the most obvious differences between the two filter types is that the non-
linearity-producing diodes in the early filter is in the forward path, whilst in the OTA
version they are in the feedback loop. If we ignore these diodes for the moment (they
are covered in detail in Section 5 later), and disregard the cut-off frequency control
circuitry, then the basic structure of the Korg35-based filter is as in Figure 3: here
resistors R1 and R2 are actually formed by Q2 and Q3 in the real thing, which are
acting as current-controlled resistors; gain block k1 is formed from the JFET buffer and
the non-inverting op amp set-up around X1; gain k2 consists of VR13/R62 and potential
divider R61/R60. This is easily recognizable as the main low-pass filter topology of the
Sallen-Key family of filters, [3].

The basic structure of the OTA-based filter is shown in Figure 4, which is slightly
harder to see due to the use of the OTAs and supporting circuitry (more on this in a
moment). In the figure: R1 and R2 represent the variable-resistor roles performed by
the OTAs (X1 and X2); gain k1 is basically the (unity gain) buffer at X2 OTA’s output;
gain k2 is R8x/VR1 and non-inverting op amp set-up X5. The noteworthy difference
with Figure 3 is the inclusion of the unity gain buffer at the output of the first OTA
(X1): this means that there is no loading effect of the second filter stage upon the
first, as there is in the Sallen-Key set-up. The effect on the derivation of the transfer
function is not great, as we’ll see below, but I do not believe this set-up corresponds to
any of those in [3], and so therefore I do not regard it as being a Sallen-Key filter.
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Figure 4: Basic filter structure of the OTA version

2.1 Transfer function of the OTA version

The equivalence of the OTA set-ups to simple RC sections is not immediately obvious
to me. Whether with sufficient intuition and familiarity with OTAs it is possible to
quickly establish what such a circuit does, or simply with enough exposure one merely
recognizes what it is, I do not know, and in any case with my limited electronics
experience I do not possess the ability to do either: thus I shall do what many do when
faced with apparently such a complex situation—resort to some mathematics! ([9].)

Consider the following simple situation:

and we require an expression for V2 in terms of Vin and Vo. By nodal analysis (current
in = current out) at the V2 node, we get

Vin

R
+ k2VosC =

V2

R
+ V2sC, (1)

then
Vin + k2VosCR = V2 + V2sCR,

which easily leads to

V2

(
1 +

s

ωc

)
= Vin + k2Vo

s

ωc
(2)

on putting ωc = 1/RC. If C were grounded, i.e. Vo = 0, this gives the familiar first
order low-pass transfer function

V2

Vin
=

1(
1 +

s

ωc

) .
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Now consider this diagrammatic representation of the first OTA stage:

Nodal analysis at the V ′
in node gives

Vin

R1
+

V2

R3
= V ′

in

(
1

R1
+

1
R2

+
1
R3

)
,

and for R1 = R3

Vin + V2 = V ′
in

(
2 +

R1

R2

)
,

which further simplifies to
V ′

in = k(Vin + V2)

where k ≈ R2/R1 when R1 � R2, which is usually the case. From the standard
expression for an OTA (for example [10]), and with io the current output from the
OTA, we have

io = 19.2Iabc(V+ − V−)

= −Kk(Vin + V2)

writing K = 19.2Iabc, carefully noting that gain K is variable, depending on the ‘am-
plifier bias current’, Iabc. On the assumption that the OTA’s output buffer doesn’t take
any current, then all of io goes through C1, so

io = (V2 − k2Vo)sC1.

Equating these two expressions gives

−Kk(Vin + V2) = (V2 − k2Vo)sC1

which arranges to

V2(Kk + sC1) = −KkVin + k2VosC1

then

V2

(
1 +

s

ωc

)
= −Vin + k2Vo

s

ωc
, (3)



10 Transfer function of the Korg35 version

where this time we have put ωc = Kk/C1. Apart from the negation of Vin (which is
easy to see is due to applying Vin to the OTA’s inverting input), this is identical to
equation (2) above. Thus the OTA set-up is equivalent to a simple RC section, with
the benefit of being able to control the R using the OTA (through Iabc and hence K,
ultimately affecting the cut-off frequency ωc).

To complete the transfer function of the OTA version, consider the second OTA
stage: from both Figures 2 and 4, we see there is no inversion of ‘V2’ at the OTA input,
and no ‘k2Vo’ feedback contribution, so from similarity with equation (3) we get

V3

(
1 +

s

ωc

)
= V2, (4)

or

Vo

k1

(
1 +

s

ωc

)
= V2,

as Vo = k1V3, and we have also implicitly made C2 = C1, we are assuming both Iabc’s
are equal and that both factors ‘k’ are the same, so ωc = Kk/C1 = Kk/C2. Substitute
for V2 in (3) above

Vo

k1

(
1 +

s

ωc

)(
1 +

s

ωc

)
= −Vin + k2Vo

s

ωc
,

and multiply out to get the complete transfer function

Vo

Vin
=

−k1

s2

ω2
c

+ (2− k1k2)
s

ωc
+ 1

. (5)

In the actual circuit, gain k1 is just that from the buffer at the second OTA output,
so is 1. Gain k2 is the attenuation from the potential divider action of R29 and pot
VR1, times the gain of non-inverting op amp in the feedback loop (again noting the
fact that for now we are ignoring the diodes): in the real circuit R31 is 2.2kΩ, plus a
2.2kΩ preset (annotated VR2 on the KLM-307 schematics), so taking a mid-way value
of 3k3Ω for R31 as shown in Figure 2, the op amp gain is (1 + 10/3.3) ≈ 4. The pot
output is zero at minimum, up to 10/(8.2+10) = 1/1.82 at its maximum, so overall k2

is 0 to 4/1.82=2.2, which should be plenty to get it to oscillate. (Indeed this suggests
the method of adjusting the preset may have been to turn the resonance to maximum,
and then adjust the preset so that the filter is comfortably oscillating.)

2.2 Transfer function of the Korg35 version

I ran into something of a pedagogical problem here: I wanted to derive the standard
Sallen-Key transfer function in such a way that the differences from the function derived
above are highlighted, and at the same time basically followed the same method to show
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the similarities, but that it retained the more general case of different R’s and C’s (as
there is a point to be made on this below), and yet didn’t require flogging through a
third derivation from scratch! What follows isn’t particularly elegant, but hopefully
gets the job done.

The Sallen-Key filter differs from the OTA-based filter above in that the second
stage loads the first: in order to see the effect this has on the final transfer function,
track the extra terms through the algebra by annotating them with a ‘•’. Thus nodal
analysis at the V2 node of Figure 3, cf equation (1), gives:

Vin

R1
+

V •
3

R2
+ k2VosC1 = V2

(
1

R1
+

1•

R2
+ sC1

)
.

Multiplying throughout by R1, putting ωc1 = 1/R1C1, and using Vo = k1V3 then gives

Vin +
Vo

k1

R•
1

R2
+ k2Vo

s

ωc1
= V2

(
1 +

R•
1

R2
+

s

ωc1

)
.

The second stage has the same expression as (4) above:

V2 = V3

(
1 +

s

ωc2

)
=

Vo

k1

(
1 +

s

ωc2

)
,

but where now ωc2 = 1/R2C2. Substituting for V2 in the previous expression gives

Vin +
Vo

k1

R•
1

R2
+ k2Vo

s

ωc1
=

Vo

k1

(
1 +

s

ωc2

)(
1 +

R•
1

R2
+

s

ωc1

)
,

which when multiplied out and re-arranged gives the (rather clumsy) transfer function

Vo

Vin
=

k1

s2

ωc1ωc2
+
(

(1− k1k2)
1

ωc1
+
(

1 +
R•

1

R2

)
1

ωc2

)
s + 1

. (6)

For comparison with the OTA-based transfer function, (5), above, putting R1 = R2

and C1 = C2, so ωc1 = ωc2 = ωc, gives the normal Sallen-Key transfer function:

Vo

Vin
=

k1

s2

ω2
c

+ (2 + 1• − k1k2)
s

ωc
+ 1

=
k1

s2

ω2
c

+ (3− k1k2)
s

ωc
+ 1

, (7)

where the ‘bullet’ term due to the loading just contributes the extra ‘1’ in the denom-
inator.

An immediate distinction comparing with equation (5) is that this filter would
require greater gain around the loop to sustain self-oscillation, i.e. k1k2 needs to be
3, rather than merely 2. From Figure 1, k1 is the gain of the JFET buffer times
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the following non-inverting op amp set-up: simple simulation shows that the former is
basically a unity-gain buffer, whilst the second has gain 1+270/4.7 = 58.4. Gain k2 has
a maximum value defined by the potential divider R60/R61, which is 220/(5600+220) =
1/26.5, but is varied from zero up to this value by the resonance potentiometer, VR13.
Thus the maximum value of k1k2 is 58.4/26.5 = 2.2: even allowing for the fact that
the JFET buffer is probably more like 1.1× than unity, this still does not make the
3 value required for self-oscillation. This discrepancy of course arises from the fact
that the Korg35-based filter doesn’t have equal R’s and C’s. We do actually have
C1 = 3 × C2, but the case for the R’s is not so clear (we return to this in Section
3.2 later): however if we assume that C1 = 3 × C2 is deliberately chosen to maintain
equal cut-off frequencies of the two sections because the equivalent resistances of the
transistors Q2 and Q3 appear to give R1 ≈ R2/3, then the transfer function changes in
the right direction. With these values we get

ωc2 =
1

R2C2
=

1

3R1 ×
C1

3

=
1

R1C1
= ωc1 = ωc, say,

and substituting back into equation (6) gives

Vo

Vin
=

k1

s2

ω2
c

+
(

1 − k1k2 + 1 +
1
3

)
s

ωc
+ 1

=
k1

s2

ω2
c

+
(
21

3 − k1k2

) s

ωc
+ 1

. (8)

This is now much closer to the OTA-based transfer function, equation (5), and it is
also clear that self-oscillation is very likely to be possible.

Part of my purpose in this study was to investigate whether the differences I per-
ceived between the filter topologies have any impact on the sound of the filters. Most
accounts suggest that the two different versions of the MS10/MS20 filters sound quite
similar, and even though I have little idea as to how much effect any particular filter’s
transfer function may have on its sound, the closeness of the transfer functions shown
here doesn’t seem to run contrary to these accounts. In a similar vein, I am not sure
whether plotting the poles yields any useful information: there is a small difference
which we’ll quickly look at, but I don’t know how significant it may be.

Normalize the transfer functions by essentially setting ωc = 1, and take the denom-
inator to be

s2 + (a − k1k2)s + 1,

where a = 2 for the OTA version, and a = 21
3 for the Korg35 version. Assuming gains

k1k2 can be varied from 0 to a so as to just give oscillation, then write this as

s2 + a(1 − kr)s + 1,
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where kr = 0 → 1 is the resonance setting from min to max. Then the filter poles are
the roots of this quadratic, which are real when

a2(1 − kr)2 > 4

that is when

kr 6 1 − 2
a
,

and conversely are complex when

kr > 1 − 2
a
.

Since kr > 0, for real roots the first relation requires

1− 2
a

> kr > 0

that is

1− 2
a

> 0,

so requiring

a > 2.

Thus for the Korg35 version, where a = 21
3 , then 1−2/a = 0.143: so for 0 6 kr < 0.143

the poles are real, and paired on the real axis; for kr = 0.143 the poles coincide at
(−1, 0); for 0.143 < kr 6 1 they are complex conjugate pairs, lying on the unit circle.
These are shown in Figure 5, for kr = 0, 0.1, 0.143, 0.25, 0.5, 0.75, 1 and 1.1.

For the OTA version, since a = 2, then the only real poles are those coincident at
(−1, 0) when kr = 0: thus there is no region where there are poles paired on the real
axis—(for any kr > 0) they are all complex conjugate pairs on the unit circle. This
difference of course is also reflected in the differing responses as the resonance changes,
but all plots of these that I have made do not show any difference worthy of mention.

3 Korg35 Voltage Control of the Cut-Off Frequency

3.1 Reverse saturation mode

In the Korg35-based filter, the two resistors of the Sallen-Key filter topology are realized
by two of the transistors in the Korg35 chip, which are used as variable resistors.
This is achieved by operating the transistors in the ‘reverse saturation mode’, and
their equivalent resistance is roughly proportional to their base currents, which are
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Figure 5: Poles of the (normalized) Korg35 transfer function, equation (8).

supplied via the effect of a third transistor in the chip (and which gives the exponential
relationship for the cut-off frequency, to be examined in section 3.2).

In a bipolar junction transistor (BJT), if we swap the collector and emitter we will
still have ‘npn’ or ‘pnp’, so we will still get some transistor action, albeit nowhere near
as good as normal since all the fabrication geometries and doping levels are optimized
for the forward mode of operation. As they can be when operated in the forward
mode, BJTs operated in the reverse mode can also become saturated, and it is in this
mode that the transistors in the Korg35 chip are biased. Deriving an expression for
the reverse saturation voltage is a little tedious: one is given in [5], equation (4.115) of
section 4.13, but as is often the case, quite a lot of detail has been left out. To convince
myself of its validity, and so that I got a better grasp of it myself, I worked through
some of the detail, which I am including here. However I shall not be giving a detailed
description of the Ebers-Moll model, which is adequately covered in [5] and many other
places. Notation in the sequel follows that in [5], section 4.13.

The Ebers-Moll model for the BJT represents it as two back-to-back diodes and
two current sources, as shown for an npn transistor in Figure 6. The diode currents are

iDE = ISE(evBE/VT − 1) (9)

iDC = ISC(evBC/VT − 1) (10)

where VT is the thermal voltage, and ISE and ISC are the saturation currents of the
diodes. From the figure, the currents can be written as

iE = iDE − αRiDC (11)

iC = −iDC + αF iDE (12)

iB = (1− αF )iDE + (1− αR)iDC (13)
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Figure 6: Ebers-Moll model for an npn transistor.

where αF (αR) is the forward (reverse) common-base current gain. The saturation
currents are related as

αF ISE = αRISC = IS ,

and using this and substituting for iDE and iDC from (9) and (10), (11), (12) and (13)
become

iE =
IS

αF
(evBE/VT − 1)− IS(evBC/VT − 1) (14)

iC = IS(evBE/VT − 1)− IS

αR
(evBC/VT − 1) (15)

iB =
IS

βF
(evBE/VT − 1) +

IS

βR
(evBC/VT − 1) (16)

where βF (βR) is the forward (reverse) common-emitter current gain,

βF =
αF

1− αF

βR =
αR

1− αR
,

or equivalently

αF =
βF

1 + βF

αR =
βR

1 + βR
. (17)

In the normal mode of operation, ‘forward active’, the base-collector junction is reverse
biased and vBC is negative, so we can neglect the evBC/VT terms in (14–16); additionally
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Figure 7: Reverse mode transistor operation.

the saturation current IS is very small, so neglect solitary IS terms and those with just
IS and a current gain; then dividing (15) by (16) gives the familiar expression

iC = βF iB.

Saturation occurs when iB is so big that the collector current, iC , ‘can’t keep up’, so
iC < βF iB. In saturation, whether forward or reverse mode, both p-n junctions are
forward biased: neglecting IS terms as before, and substituting for αR from (17), (15)
and (16) can be approximated as

iC = ISevBE /VT − IS

(
1 + βR

βR

)
evBC/VT (18)

iB =
IS

βF
evBE/VT +

IS

βR
evBC /VT . (19)

These expressions can be manipulated in order to find the saturation voltage, VCEsat,
as the difference between vBC and vBE, for either the forward or reverse saturation
modes, and we now show the reverse case. Figure 7 shows a transistor operating in
the reverse mode: the collector current is iC = −I2; emitter current iE = −I1; base
current iB = IB; and where I2 = I1 + IB . Thus in the reverse active mode we would
have I1 = βRIB, and reverse saturation is when the base-emitter junction is forward
biased, and I1 < βRIB. Substitute for iC in (18) and divide by (19) to get

−(I1 + IB)
IB

=
evBE/VT −

(
1 + βR

βR

)
evBC/VT

1
βF

evBE /VT +
1

βR
evBC/VT

.
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Factor out the evBE /VT :

−(I1 + IB)
IB

=
1 −

(
1 + βR

βR

)
e(vBC−vBE)/VT

1
βF

+
1

βR
e(vBC−vBE)/VT

,

cross-multiply,
(
−I1

IB
− 1
)(

1
βF

+
1
βR

e(vBC−vBE )/VT

)
= 1 −

(
1

βR
+ 1
)

e(vBC−vBE )/VT ,

gather terms,

e(vBC−vBE )/VT

(
1 − I1

IBβR

)
=
(

1 +
1

βF
+

I1

IBβF

)
,

and finally re-arrange and take logs to get

vBC − vBE = VECsat = VT log
1 +

1
βF

+
I1

IBβF

1 − I1

IBβR

. (20)

This is equation (4.115) in section 4.13 of [5]—what would be really useful for our
present purposes is some measure of the equivalent resistance, VECsat/I1, as a function
of the base current, IB.

Starting with the numerator of the log term on the right-hand side of equation (20),
for a transistor with a decent forward current gain, we’ll have βF � βR > 1, and in
reverse saturation, I1 < βRIB or I1/IB < βR, so we have

1
βF

� 1 and also
I1

IBβF
<

βR

βF
� 1,

so ignore these terms to get

VECsat ≈ VT log
1

1 − I1

IBβR

.

In the denominator we also have
I1

IBβR
< 1

by the saturation condition, so now using the standard expansion

1
1 + x

= 1 − x + x2 − x3 + x4 − · · · − 1 < x < 1,

further approximate to

VECsat ≈ VT log
(

1 +
I1

IBβR

)
.
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Finally, using another standard expansion

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · − 1 < x 6 1,

we get

VECsat ≈ VT
I1

IBβR
,

to give

VECsat

I1
≈ VT

IBβR
, (21)

which is an expression of the form that we were seeking—the collector-emitter resistance
as a function of the base current.

After all these approximations, it is natural to ask whether the above expression
bears any resemblance to reality. To answer that properly would require a ‘parametric
analyzer’, to characterize the given transistor in its reverse region of operation. Needless
to say one of these isn’t among my few pieces of lab equipment, but the answer can
be glimpsed through SPICE simulation, and comparison of calculated values versus
measurements from real hardware. The latter will have to wait for the second phase of
this investigation, but I have done the former using SIMetrix.

The SPICE BJT model is very similar to that we started from above (taken from
[5]), so as long as the reverse parameters are specified for the transistor of interest, we
may get something of use. The parameters are BR, NR, ISC, IKR, NC and VAR—see
for example [1] or [7]—and BR, the reverse current gain, corresponds to βR used in the
calculations above. In the Korg35 chip, the transistors of concern are 2SC1623 types,
and fortunately the PSpice model of this transistor does have the reverse parameters
defined: in particular BF = 206.7 ≡ βF and BR = 4.210 ≡ βR.

So the very simple circuit at the top of Figure 8 was entered into SIMetrix, driving
the transistor with the collector and emitter swapped. A DC sweep of source V 1
was performed from 0 to 200mV, as the base current I1 was stepped (logarithmically)
from 1µA to 10µA: plots of the emitter voltage against the emitter current from the
simulation run are shown in the middle set of traces. The traces show the classic BJT
behaviour (albeit in the reverse region): nearer the origin the transistor is saturated,
and as we move away and the lines become vertical, the transistor enters the active
region. Mathematica was used to generate data from both the main reverse saturation
expression and its approximation, equations (20) and (21) above, for one particular
value of base current, IB = 6.31µA, using VT = 25mV and with βF and βR from
the SPICE model as above. The data was then imported into SIMetrix and plotted
alongside the equivalent simulation curve, the bottom set of traces in the figure. It can
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Figure 8: Comparison of BJT reverse saturation characteristics: simulation circuit
(top); simulation output (middle); comparison of simulated, analytic and approximated
data (bottom).
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be seen that the simulation and analytic data are not really in that good agreement,
most probably due to the less sophisticated model used in the above analysis. However,
the linear approximation to the initial slope of the curve, i.e. the resistance, is actually
quite passable, and is certainly more than capable of providing some assistance to both
understanding the filter operation, and as an aid to predicting filter performance, which
follows at the end of Section 3.2 below.

3.2 Exponential control

In Section 2.1, during the derivation of the transfer function for the OTA version, we
made the substitution ωc = Kk/C1 at equation (3), where K = 19.2Iabc, and k derives
from the scaling of the resistors at the inputs of the OTA. Thus we have

ωc = 2πfc =
Kk

C1
=

19.2Iabck

C1
,

from which we see that the filter cut-off frequency fc is directly proportional to the
applied current Iabc driving the OTA:

fc ∝ Iabc or fc = kαIabc,

where the constant of proportionality kα = 19.2k/(2πC1). For the Korg35-based ver-
sion, we have ωc = 1/RC, first introduced at equation (2), but used implicitly through-
out the Sallen-Key/Korg35 transfer function derivation in Section 2.2. Then in Section
3.1 at equation (21) we (tentatively!) derived an approximation for the equivalent
resistance of the transistors in the Korg35 chip:

Requiv =
VECsat

I1
≈ VT

IBβR
, (22)

and these act as the resistances of the equivalent ‘RC’ stages, so in this case we have

ωc = 2πfc =
1

RC
=

IBβR

VTC
, (23)

and once again we have that the cut-off frequency is directly proportional to an applied
current (in this case IB):

fc ∝ IB or fc = kβIB ,

where kβ = βR/(2πVTC). Thus in either case we can control the cut-off frequency, fc,
by controlling a current.

It turns out that to help make a voltage-controlled filter musically useful, it is
convenient to control the cut-off frequency, fc, exponentially with respect to an input
voltage, Vin, and often a ‘1V/octave’ control law is used, i.e.

fc = f02Vin ,
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where f0 is the cut-off frequency with no input, Vin = 0, and so we see that the cut-off
frequency doubles, i.e. increases by an octave, for every 1V of input:

fc = f020 = f0 for Vin = 0

= f021 = 2f0 = 1

= f022 = 4f0 = 2, etc.

By writing

fc = f02Vin = f0(elog 2)Vin = f0e
0.69Vin

where e = 2.71828 . . . , the base of natural logarithms, this exponential relationship
becomes even clearer.

It is incredibly fortuitous then that the current through a standard p–n semicon-
ductor junction is exponentially related to the voltage across it: how this is achieved in
the Korg35 chip is detailed next; the OTA version uses a standard type of exponential
converter, which is briefly mentioned later. The exponential current output from either
mechanism is then used to control the frequency, as outlined at the beginning of this
section, thus providing the overall exponential control of the frequency that is desired.

The circuit at the top of Figure 9 shows the basic idea of how an exponential
relationship is achieved in the Korg35 chip: D1 represents the base-collector junction
of transistor Q1 in the Korg35, and similarly D2 for Q2. By varying the voltage Vin, the
total current I through the resistor is split symmetrically through the diodes, currents
I1 and I2: when Vin is sufficiently negative, D2 does not conduct, and all the current
flows through D1; as Vin is increased, D2 starts to conduct and ‘robs’ some of the
current from D1; when Vin is sufficiently large and positive, D1 stops conducting and
all the current flows through D2. The simulation traces in Figure 9 show the three
currents as the voltage Vin is swept from −500mV to +500mV: clearly the relationship
between the currents and Vin is similar to that for the standard differential pair, and
is based on the hyperbolic tangent:

I1 =
I

2

[
1− tanh

(
Vin

2VT

)]
,

I2 =
I

2

[
1 + tanh

(
Vin

2VT

)]
.

(The derivation of this is not worked here, as what follows below is very similar—the
equivalent for the differential pair may be found in [6], which is based on a method
found in [8].)

It can be seen that if Vin is restricted to be below about −50mV, then current I2

(blue in Figure 9) has the required (approximate) exponential relationship to Vin. This
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Figure 9: Achieving basic exponential control

can be shown more formally, as by definition

tanhx =
ex − e−x

ex + e−x
=

e2x − 1
e2x + 1

,

and using the approximation

(1 + x)−1 = 1 − x + x2 − x3 + x4 − · · · , |x| < 1,

then

(e2x − 1)(e2x + 1)−1 ≈ (e2x − 1)(1− e2x + e4x − · · ·

= e2x − e4x − 1 + e2x − e4x + · · ·

= −1 + 2e2x − 2e4x · · ·
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Figure 10: Approximation of 2e2x (upper curve) by 1 + tanh x

as long as |e2x| < 1, and if this is the case, then the higher-order terms in e are even
smaller, so neglect them to give

tanh x ≈ −1 + 2e2x

or more usefully

1 + tanh x ≈ 2e2x. (24)

The condition |e2x| < 1 just translates into x < 0, but the closeness of the approxima-
tion also depends on the omitted terms: a visual check of this is shown in Figure 10
which shows 1 + tanhx plotted with 2e2x, whereupon it seems clear that the approxi-
mation is going to be close enough for the purposes of controlling the cut-off frequency
of the filter!

Thus current I2 gives the kind of exponential relationship we want

I2 ≈ I

2

[
2e

2
(

Vin
2VT

)]
= Ie

(
Vin
VT

)
.

However this doesn’t reflect the fact that the Korg35 chip has the three diodes/transistors
in it’s set-up, so a slightly more complicated model is needed—the workings of this
model are almost identical to the preceding, and so are the outcomes, with one excep-
tion which may be the reason for the unequal capacitor values used in the filter, and
so it will be expounded in full.

On the left in Figure 11 is a simplified representation of the relevant transistors
in the Korg35, and on the right is the model we’ll use to represent them. Voltage Vb

is introduced to represent the extra voltage below D3 (not present for D2/Q2) caused
by the emitter-collector drop of Q2, and which we will consider to be constant in the
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Figure 11: The three-transistor arrangement, and a model for it

Figure 12: Currents in the three-transistor arrangement

following analysis. Figure 12 shows the four currents from a simulation run of the left
(transistor) circuit in Figure 11: as one would expect in comparison with Figure 9, due
to the third diode/transistor, the symmetry has been upset, and now (roughly) the
sum of currents through D2/Q2 and D3/Q3 now balance that through D1/Q1; note
also that I3 is slightly less than I2, which is due to the voltage Vb we have introduced
in the diode model. We will now derive some expressions for these currents.

Annotate the voltage at the node joining the diodes to R1 as Va. Assume the
saturation currents of all three diodes to be Is, and using the standard Ebers-Moll
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model, we can formulate the currents as:

I = I1 + I2 + I3 (25)

I1 = Ise
Va−Vin

VT (26)

I2 = Ise
Va
VT (27)

I3 = Ise
Va−Vb

VT (28)

For I2: divide (26) by (27); (28) by (27); and substitute back into (25):

I1

I2
= e

−Vin
VT , so I1 = I2e

−Vin
VT

I3

I2
= e

− Vb
VT , so I3 = I2e

− Vb
VT

then
I = I2e

−Vin
VT + I2 + I2e

− Vb
VT ,

so
I2 =

I

1 + e
− Vb

VT + e
−Vin

VT

=
I

A + e
−Vin

VT

where we have substituted
A = 1 + e

− Vb
VT

for notational simplicity. Factor the A out:

I2 =
I

A

(
1 + e

−Vin
VT

A

) =
I

A

(
1 + e

−Vin
VT

−logA
) , (29)

multiply top and bottom by 2, and add zero into the top

I2 =
I

(
1 + 1 + e

−Vin
VT

−log A − e
−Vin

VT
−log A

)

2A

(
1 + e

−Vin
VT

−log A
)

,

then divide

I2 =
I

2A


1 +

1 − e
−Vin

VT
−log A

1 + e
−Vin

VT
−log A




=
I

2A

(
1 + tanh

1
2

(
Vin

VT
+ logA

))
. (30)

The working for I3 is similar: dividing (26) by (28), (27) by (28) and substituting into
(25) gives

I = I3e
−Vin+Vb

VT + I3e
Vb
VT + I3,
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which re-arranges to

I3 =
I

B

(
1 + e

−Vin+Vb
VT

B

)

where
B = 1 + e

Vb
VT .

In comparison with (29) and (30) above, this can be seen to be

I3 =
I

2B

(
1 + tanh

1
2

(
Vin − Vb

VT
+ logB

))
. (31)

It is the ‘−Vb’ term inside the tanh in this last expression which causes the I3 curve to lie
a little below I2 in Figure 12—this is made more obvious below when the approximation
to the exponential is made, but note that from both the expressions for I2 and I3 the
apparent ‘halving’ of I1 is not seen, so first we work I1, just as a ‘sensibility’ check.
In order to simplify the working, assume that Vb = 0: this in turn means that both
A = B = 2. Then similar to before, divide (27) by (26); (28) by (26); and substitute
back into (25), so that

I = I1 + I1e
Vin
VT + I1e

Vin
VT ,

and
I1 =

I

1 + 2e
Vin
VT

to give (again by comparison with (29) and (30) worked above for I2)

I1 =
I

2

(
1− tanh

1
2

(
Vin

VT
+ log 2

))

and the other two are now identical, since Vb = 0 and A = B = 2

I2 = I3 =
I

4

(
1 + tanh

1
2

(
Vin

VT
+ log 2

))
,

from which the halving effect is now abundantly clear, due to the ‘I/4’ factor, rather
than the ‘I/2’ of the I1 expression.

If we ensure that Vin is sufficiently negative, we can use the approximation (24) on
the I2 and I3 expressions (30) and (31) to get

I2 ≈ I

A

(
e

Vin
VT

+log A
)

= Ie
Vin
VT (32)

I3 ≈ I

B

(
e

Vin−Vb
VT

+log B
)

= Ie
Vin−Vb

VT = kIe
Vin
VT

where k = e−Vb/VT , and which will be less than one as long as Vb > 0, being in broad
agreement with the simulation traces in Figure 12. This is what we want: at the start of
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Figure 13: Input scaling of frequency control voltage (Korg35 version)

the section we saw that the cut-off frequency is directly related to the current through
the transistors (via the ‘equivalent resistance’), and the current is exponentially related
to an input voltage, thus giving exponential control of the frequency. What is more,
from equation (22) at the beginning of the section, the equivalent resistance of the
transistor is inversely proportional to the base current, IB (given here by I2 and I3).
Then since I3 < I2, the equivalent resistance of Q3 is greater than that of Q2. Thus
if we want to keep the cut-off frequencies of both the stages roughly the same, we will
need to adjust the capacitors: (notating them as Figure 3) we thus require C2 < C1,
which of course is exactly the situation in the actual circuit. This may be part of
the reason why the capacitors are unequal: it is doubtful whether in reality the ‘k’
in the above I3 expression is as much as the 1/3 factor seen for the capacitors in the
real circuit, but then it is highly improbable that Korg did anywhere near this sort of
analysis during the design of the filter, they would surely have been driven by empirical
data, i.e. altered the C values until it sounded right, or maybe the 3-to-1 ratio was seen
to give a better cut-off slope when plotted? (It is even tricky to make a comparison
using simulation: making the capacitors equal shifts all the responses up in frequency,
and also dramatically lowers the resonance for any given setting of the pot, due to the
change of the ‘21

3 ’ constant to ‘3’, in the denominator of the transfer function.)

For the above exponential approximation to work, we saw that Vin needs to be small
and negative—for practical use then, we need to suitably scale the input control voltage
before inputting it to the Korg35 chip. Figure 13 shows the network which achieves
this. Let the input frequency control voltage be Vf : we thus require Vin in terms of this;
the -12.7V voltage is derived from a ‘DC operating point’ SPICE simulation. Nodal
analysis at the Vin node:

Vf

47
+

V1

0.68
= Vin

(
1
47

+
1

0.68

)
.

Ignore the 1/47 on right as it is much smaller than the other term, then multiply
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throughout by 47:
Vf + 69V1 = 69Vin.

At the V1 node:
Vin

0.68
− 12.7

15
= V1

(
1

0.68
+

1
15

+
1

0.22

)

Again, ignore the 1/15 term on the right, then multiply throughout by 15:

22Vin − 12.7 = 90V1,

and then eliminate V1 between the two expressions

Vf +
69
90

(22Vin − 12.7) = 69Vin.

Re-arranging then gives

Vin =
Vf

52
− 0.2.

This gives Vin ≈ −300mV for Vf = −5V, and Vin ≈ −100mV for Vf = +5V, i.e. Vin is
small and negative as required. If we substitute for Vin in (32) then we get

I2 = Ie
Vin
VT = Ie

− 0.2
VT e

Vf
52VT = I ′e0.77Vf (33)

≈ I ′2Vf ,

where VT = 0.025, and we have rolled the constant involving it into I ′ (more exactly
e0.77 = 2.12). Thus Vf has a 1V/octave response with respect to the cut-off frequency.

Figure 14 shows the frequency responses from an AC simulation of the circuit in
Figure 1, for V4(≡ Vf) in 1V steps from −5V to +5V: the 12dB/octave cut-off slope is
clearly to be seen, and if we take the first 8 steps from ≈ 22Hz to 4900Hz (the last few
clearly ‘bunch up’), we get

log2
4900
22

=
log 4900/22

log 2
= 7.8 octaves,

thus demonstrating the 1V/octave relationship. (I suspect other circuitry within the
MS10/MS20 may re-scale this, but I’ve not been that bothered to check in any detail.)

Finally to end this section, let’s put all the equations together to see how well they
might predict the filter’s performance: put I2 from equation (33) as IB in (23) to get

fc =
Ie

− 0.2
VT e

Vf
52VT βR

2πVTC
,

where: I is the ‘reference current’ for the exponential converter through R3 (Figure
1), which we can approximate as 15/470k = 32µA; we take VT = 0.025mV; from the
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Figure 14: Frequency response of Korg35-based filter

SPICE model for the 2SC1623, β = 4.21; and C = 3.3nF. Substituting these and
calculating we get

fc = 87.0 eVf/1.3,

which for Vf = −5 gives fc = 2Hz, and Vf = +5 gives fc = 4070Hz, compared to
approximately 22Hz and 12kHz for the simulation, from Figure 14. I actually think
this is pretty good, considering all the approximations we have made down the line, from
that for the equivalent resistance of the transistors, to approximating the exponentials
in the exponential converter and so on. Certainly it should get you in the right ball-park
for an initial choice of the capacitor values!

4 Asymmetrical Frequency and Resonance Responses of

the Korg35

A simple transient analysis run of the circuit in Figure 1 shows another facet of the
Korg35-based filter which isn’t present in the later OTA version: the resonance is
asymmetrical, being stronger for the negative half of the signal than for the positive
half, as shown in the top trace of Figure 15. (For comparison a similar signal with similar
settings from the OTA version is also given, and which shows the normal symmetrical
shape.) This is caused by the signal itself interacting with the currents in the Korg35,
affecting both the cut-off frequency and the resonance. From Section 3.2, we have
that increasing the signal itself will reduce the current through the two transistors of
the Korg35, effectively increasing their equivalent resistance, and in turn decreasing
the frequency of the poles formed with their respective capacitors. This is barely
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Figure 15: Uneven resonance response of Korg35 filter (top); similar signal for OTA
version (bottom)

discernable in Figure 15, but measurements taken directly from the simulation show
that the ‘positive’ ringing frequency is about 1.7kHz, whilst that for the negative half
is around 2kHz. Whilst deriving the transfer function for the Korg35 filter, equation
(8) in Section 2.2, we have already seen how changing the relative values of the R’s
and C’s can have an effect on the constant on the s-term in the denominator (which
‘defines’ the resonance), so it is perhaps not so surprising that the magnitude and sign
of the signal is also affecting the resonance in this way!

5 Non-Linear Effects of the Feedback Diodes

In both filter versions there are gain elements having back-to-back diodes in the (local)
feedback loop, which introduce non-linearities into the gain structures of the filters. The
effect of these diodes is to deliberately distort the signal being filtered, thus adding to
the overall aural characteristics of the filter. There are considerable differences between
the way these are implemented in both filters: in the Korg35 version there are single
back-to-back diodes in the main gain element of the forward path; in the OTA version
there are strings of three diodes back-to-back in the gain element in the feedback path.
In this section we’ll examine the effects of these diodes, starting with their general effect
on the non-inverting op amp set-up in which they appear in both filters.
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Figure 16: Gain-limiting diodes: Korg35 version (left); OTA version (right)

Figure 16 shows idealized representations of the circuit elements containing the
diodes: E1 and E2 are high-gain voltage-controlled voltage-sources representing the
appropriate op amps; capacitors maintaining DC levels have been omitted. In such
an arrangement, if the input voltage is sufficiently small such that the diodes don’t
conduct (i.e. the input is approximately the total diode drop divided by the gain of
the op amp set-up), this operates as a normal non-inverting op amp with it’s gain
as appropriate; once the output voltage is such that the diodes conduct, it basically
works as a (unity-gain) voltage follower, albeit with a DC-offset given by the diode
drop. Thus small input voltages are amplified by the nominal gain of the section; as
the input increases, the gain falls away, until at larger voltages it is just unity. Both
transfer functions of the above circuits show this behaviour, but with very different
scales, as seen in Figure 17. For the Korg35 version the central section has a gain of
(1 + 270/4.7) ≈ 58; also shown is the unity-gain line, to which the main line is parallel
once the diodes are conducting, but a diode-drop (about 0.5V) away from it (1N4148
diodes were used in the simulations throughout this section). The OTA version has a
central gain section of only 1 + 10/3.3 = 4, and due to the string of three diodes in
series, when they are conducting the combined drop is about 2V, giving a much less
pronounced ‘kink’ in the curve. It seems quite tricky to make a meaningful comparison
between the two, due to the large differences in gain and the single vs. three diodes
matter, but Figure 18 shows how these circuits distort: in both cases the magnitude of
the input signal was chosen to give roughly the diode drops at the output if the diodes
weren’t there, i.e. 0.5/58 ≈ 8mV for the Korg35 version, and 2.1/4 ≈ 525mV for the
OTA version. The traces show the output with and without the diodes, along with
the distortion measurement made by SIMetrix: the gain drops off as the magnitude
increases, causing the output wave to be more ‘rounded’ at its extremities.
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Figure 17: Diode limiter transfer functions: Korg35 (top); OTA (bottom)

As already noted, a major difference between the filters is where the diodes are
located within the filter structure: in the Korg35 version they are in the forward path;
in the OTA version they are in the feedback path. It seems highly likely that this will
cause a significant difference in the filters’ sound. To get some handle on what this
difference might be, I did the following: AC analysis runs in SPICE are performed
by finding the DC bias point, then non-linear elements like transistors, diodes etc.
are linearized about this point (i.e. they are replaced with their small-signal models),
and then the frequency sweep is performed. Thus any non-linear effects like clipping,
distortion, saturation etc. will not be seen ([2]). To get around this I decided to see
if I could deliberately introduce a DC signal that would bias the circuits into the non-
linear regions of interest—Figure 19 gives the circuits I came up with. Both are again
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Figure 18: Diode limiter distortion: Korg35 (top); OTA (bottom)

idealized versions of the respective filter, and in both cases I have introduced voltage
V2 at the input of the op amp which has the diodes: by performing AC sweeps whilst
stepping V2, I was able to get some idea of what would happen within each filter. The
results of these sweeps are shown in Figure 20, and it is immediately obvious that
they are quite different. I have interpreted these by thinking about what happens at
one particular frequency whilst V2 is increased, i.e. equivalent to the signal magnitude
being increased. For the Korg35 version it is clear that, no matter where we are in the
spectrum (be it in the passband, around the cut-off frequency or in the reject band),
then as the signal magnitude is increased the gain drops (as the diodes conduct more),
and so that frequency will suffer progressive distortion. This seems to make sense to
me: as the diodes are in the forward path, then signals of all frequencies will pass
through them.

The picture for the OTA version is quite different: the only region affected by the
increasing DC offset is that around the cut-off frequency (the ‘corner’). Again, to me
this seems to make sense: as the diodes are in the feedback path, only frequencies
which are ‘selected’ by the feedback network will be affected by them. This difference
also suggests a possible means of aurally detecting whether any particular Korg has the
earlier or later filter: set the cut-off frequency fairly high and input a sine wave of much
lower frequency; adjust the magnitude of the input signal; if the sound becomes ‘richer’
as the magnitude is increased (i.e. distortion is adding harmonics), then it could be
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Figure 19: Circuits to help quantify the non-linear gains
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Figure 20: Gain reductions due to diode non-linearities

a Korg35 version; if the sound stays substantially the same, then chances are it is the
later OTA version (and I must emphasize at this point that at the time of writing I
have no way of checking this—there may be all manner of other distortions, e.g. in the
OTA input stage, that might invalidate it!).

To double-check some of this thinking, I ran some transient analyses of the circuits
in Figure 19 (with the AC source replaced with a sine wave). With the component
values as shown, the cut-off frequencies were both around 7kHz, and there is a mod-
erate amount of resonance in both cases (as suggested by the peaks in Figure 20). A
500Hz sine wave (i.e. well into the pass-band and away from the corner frequency), into
the Korg35 version, with three different peak magnitudes, shows increasing amounts of
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Figure 21: Korg35 transient analysis, 500Hz

distortion in Figure 21 , which seems to corroborate Figure 20 nicely. Corresponding
transient runs for the OTA version are shown in Figure 22, but the results are not as
immediate. At the top is the output from a 500Hz sine wave, of three different magni-
tudes: even though this is well into the passband, there is still some residual distortion
measured, due to the effect of resonance, which if lowered, makes the distortion go
away. The middle set of traces shows a 5kHz wave: being much closer to the peak it
does now exhibit distortion due to the diodes in the feedback loop. I was however a
bit suspicious of the slight asymmetry of the distortion, and to ensure this wasn’t due
to some facet of the interaction of the fed back signal with the original one, I simply
disconnected the diodes in the simulation, and the distortion basically disappears, as
seen in the bottom set of traces. I’m reasonably convinced this reinforces how I’m
thinking about the effects of the diodes, but the acid-test will be experimentation with
some actual hardware!

6 Exponential Control in the OTA Version

Exponential control of the filter in the later OTA-based filters is by means of a standard
exponential converter consisting of two PNP transistors and an op amp, the output of
which drives the Iabc pins of the LM13600s. Having flogged through all the calculations,
I was a little dismayed to discover that they produce (at the top end) current figures
which are out by about a factor of two against the simulation. An AC simulation of
the circuit in Figure 2 produces the traces shown in Figure 23: this is 10 steps of 0.5V
each, from −2.5V to 2.5V, into the 47kΩ resistor at the ‘EXT CUT OFF FREQ’ input
on the schematics, which gave a reasonable looking spread, and I adjusted the voltage
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Figure 22: OTA transient analysis: 500Hz (top); 5kHz (middle); 5kHz, no diodes
(bottom)
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Figure 23: Frequency response of OTA-based filter

at the 1MΩ resistor accordingly to give a reasonable absolute alignment. The lower few
steps are not evenly spaced, but if we take the 5 steps (i.e. 2.5V in total) from 100Hz
to approximately 4400kHz, this is

log2

4400
100

=
log 4400/100

log 2
= 5.5 octaves,

and so clearly 2 octaves/volt, or 0.5V/octave, is intended! I was hoping that some
calculations might bear this out, but the simulation gives about 400nA to 1mA output
from the exponential converter, and the hand-calculations gave 225nA to about 2mA! I
suspect several reasons for this: at high currents, the ‘log conformity’ of the transistors
will drop off (perhaps especially so since PNP?); I was ignoring any effects due to the
base currents (which probably have some influence/are bigger than I was anticipating,
again possibly exacerbated by the PNPs); I was taking no account of the dreaded ‘bulk
emitter resistance’ which might also have been playing a role at such high currents.

In any case with so many control voltages being summed by such a simple passive
network, and the fact that the 2.2kΩ resistor (R34) is fixed, and which would preferably
be adjustable for some tweaking to the ‘control law’, this clearly isn’t going to be super-
accurate! As a rough ‘guesstimate’, the input voltage is attenuated by (very roughly)
2.2/47 = 1/21, and then comes through the converter as

eVin/(21VT ) = e1.9Vin = 6.7Vin,

which is some way from the ‘4’ one would like to see for a 2 octave/volt law (but it is
in the right direction). All-in-all I’m not bothered by this, as it plays such a little part
in the main focus of the study.
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Figure 24: High-pass structure of the Korg35-based filter

7 The High-Pass Filter Variants are 6dB, not 12!

During development of the Doepfer A-106 MS20 filter clone, Dieter Doepfer noted that
the high-pass configuration of the filter appeared to only have a 6dB/octave response,
contrary to the normally reported figure of 12dB/octave. Simple calculation of the
transfer function for the high-pass configuration shows that this assertion is indeed
correct.

A device that can be employed to turn a low-pass filter into a high-pass one is to
swap all frequency-determining R’s for C’s and C’s for R’s ([4]). Korg have not done
this for either of the high-pass variants of the Korg35- and OTA-based filters in the
MS20, but instead have grounded the normal (low-pass) input, and fed the input into
the end of C2, which has been lifted off ground—Figure 24 shows the resulting basic
filter structure. The resulting high-pass filter does not have the 12dB/octave response
that the RC-CR transformation would give, but in fact only has a 6dB response, as
we now show.

For simplicity set R1 = R2 = R, and C1 = C2 = C. As usual, nodal analysis at V2

gives
V3

R
+ k2VosC = V2

(
1
R

+
1
R

+ sC

)
,

which on putting ωc = 1/RC and using Vo = k1V3 becomes

Vo

(
1
k1

+ k2
s

ωc

)
= V2

(
2 +

s

ωc

)
.

Nodal analysis at V3 gives

VinsC +
V2

R
= V3

(
1
R

+ sC

)
,

and using the same substitutions,

Vin
s

ωc
+ V2 =

Vo

k1

(
1 +

s

ωc

)
.
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Now rid V2:

Vo

(
1
k1

+ k2
s

ωc

)
=
(

Vo

k1

(
1 +

s

ωc

)
− Vin

s

ωc

)(
2 +

s

ωc

)
.

Re-arranging gives

Vo

Vin
=

k1
2s

ωc
+ k1

s2

ω2
c

s2

ω2
c

+ (3 − k1k2)
s

ωc
+ 1

=
2k1

s

ωc

s2

ω2
c

+ (3 − k1k2)
s

ωc
+ 1

+
k1

s2

ω2
c

s2

ω2
c

+ (3− k1k2)
s

ωc
+ 1

.

This transfer function represents a 6dB+6dB band-pass filter in parallel with a 12dB
high-pass filter: above the cut-off frequency the band-pass will attempt to attenuate the
signal at 6dB/octave, however the high-pass will pass the signal (effectively) unattenu-
ated; below the cut-off the high-pass will attenuate at 12dB/octave, but the band-pass
will only attenuate at 6dB/octave—the band-pass will ‘win’, and the signal is thus only
attenuated by 6dB/octave. Thus the whole acts as a 6dB/octave high-pass filter. Note
that I have rather ignored the effects of the ‘2k1’ and ‘k1’ gains in the numerators for
this argument, but they really only affect the absolute gain levels, rather than the rel-
ative ones we are interested in—in any case, simple simulation confirms this situation.
Figure 25 shows three SIMetrix ‘Laplace blocks’ containing the 3 transfer functions,
band-pass, high-pass and combined, for k1 = k2 = 1, and the corresponding outputs.
If the circuit of Figure 24 is also run with R1 = R2 = C1 = C2 = 1 then its output
response exactly over lies the blue ‘combined’ line of Figure 25.

8 Sallen-Key ‘Myths’ Discredited

Myth 1. Several times I’ve heard it expressed to the effect that ‘Sallen-Key filters
are oscillators that also act as filters’. This is not entirely incorrect, for Sallen-Key
filters have several impracticalities that normally mean they are not the best choice in
filters. For a second order filter the reciprocal of the coefficient on s in the denominator
is Q, the ‘quality factor’, which gives an indication of the amount of ‘peaking’ (i.e.
resonance) at the cut-off frequency. For the Sallen-Key filter with equal R’s and C’s,
we get from equation (7), with k2 = 1,

Q =
1

3 − k1
.

This shows the first ‘problem’: we cannot choose Q independently from the amplifier
gain, k1, which is often inconvenient. Secondly, it is quite straightforward to show, [4],
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Figure 25: The individual high-pass components, and their responses
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that Q is very sensitive to changes in the gain k1:

Percentage error in Q = (3Q− 1)× percentage error in k1.

To illustrate this, suppose we want Q to be 20 in the following circuit:

Then the above says a 1% change in k1 produces ≈ 60% change in Q. Taking R2 as
10kΩ, then R1 is such that

20 =
1

3 −
(

1 +
10k
R1

) ,

which works out at R1 = 5128Ω (and which makes the gain k1 ≈ 3). Then a 1% drop
in R1 is 5077Ω, which gives

Q =
1

3 −
(

1 +
10k
5077

) = 33,

and note this is not even a 1% change in k1! This is illustrated graphically in Figure
26 where I have plotted the magnitude response divided by 3 (the approximate gain,
k1, and note the linear scale) so that the peaks are roughly the Q values. Thus for the
Sallen-Key filters, the sensitivity of Q to the components in the circuit is not very good,
making it hard to reliably design a filter with high Q: if you try and do so, there is a
good chance you’ll get more Q than you bargained for, and the filter may well oscillate!

Myth 2. ‘In Sallen-Key filters the resonance starts at the zero crossing.’ This
has nothing to do with the Sallen-Key structure per se, but is merely caused by the
non-linear gain introduced by the back-to-back diodes. As illustrated by Figure 17 in
Section 5, the gain of an op amp set-up with the diodes is greatest for small signals
swinging around zero, with larger signals undergoing smaller changes in gain due to
the effects of the diodes. Since the resonance depends on the gain, it is only natural
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Figure 26: Change in Q (approximately the peak) for a 1% change in R1

that this should start to show itself near the zero crossing, as this is where the gain is
highest. A simple (if somewhat contrived) example illustrates this: the circuit at the
top of Figure 27 is the standard four-pole filter consisting of four buffered RC sections
(such as the Moog ladder, CEM3320, SSM2040, and so on and so forth), which for
oscillation requires a gain of 4 around the feedback loop. For the traces, input V1 is
a 50Hz, 500mV peak-to-peak rising sawtooth (it is inverted by the input stage!); E1

and E2 are high-gain voltage-controlled voltage sources acting as op amps; E1 adds
the input and the feedback; E2 and E3 combine to give the up-to-4 gain needed for
high-resonance and oscillation (in order to get the diodes to work decently, the gain
of E2 has been boosted, and is then brought back down to size by E3). So with the
values shown, we see that the top trace in the figure exhibits the kind of behaviour
we are talking about, and so this trait is not exclusively reserved for Sallen-Key filter
topologies! If we remove the diodes and reduce the gain somewhat (to stop it oscillating
completely!) by putting R1 = 15k, then we ‘recover’ the usual behaviour of the filter
ringing at the extremities of the signal swing.

9 Conclusion

We have seen that the two different filter versions do share some similarities, but there
are also differences, perhaps the most notable being the position of the distortion-
inducing diodes. But I feel that for now I have analysed the heck out of them, so I
now intend to build three filters for side-by-side comparison: a clone of the Korg35
version; an OTA clone; and an OTA version with the proper Sallen-Key topology,
but using back-to-back OTAs wired as voltage-controlled resistors (I have a rough and
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Figure 27: Standard 4-pole filter ringing at the zero-crossing
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ready simulation of this working, which suggests it is tractable). Hopefully when I have
done this I shall be able to add further comments as to the efficacy of some of all this
analysis!

One further question lingers though: what was it that made Korg ditch the Korg35
in favour of the OTA version? My two main guesses would be: the CV bleed-through
on the Korg35 is probably pretty bad (simulation will probably show this, but I haven’t
tried it yet!); and for optimum performance the transistors in the chip would probably
need to be matched, which must have added significantly to their manufacturing cost
(or they simply made loads, and had a test to reject ‘bad ones’—either way, it sounds
costly).
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