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4 Analysis of the Moog transistor ladder and derivative filters

1 Introduction

After the introduction of its design in the mid-60s, the Moog transistor ladder filter [1, 2]
quickly became a favourite, and is something of a benchmark against which other filters
used in synthesizers tend to be judged. Much of the usefulness of the filter is the ability
to apply voltage-control to the cut-off frequency, as it was this, along with voltage-
controlled oscillators and amplifiers, that helped turn the electronic music synthesizer
into a much more practical musical instrument than it had hitherto been. Its main
endearing feature is, of course, that it produces a wide range of pleasant sounds!

The Moog ladder filter has undoubtedly been the subject of a great deal of analysis
over the intervening decades, but very little of this seems to have appeared in print. It
was this paucity of available analyses of the filter that initially led me to working out
what I wanted to know for myself, resulting in [3]: the only other paper I could find
at the time was [4], but this gives little insight as to how the physical structure of the
filter actually results in any filtering action. Since that time though (early 2004), several
papers relating to the Moog ladder filter and its derivatives have appeared, [5, 6, 7, 8],
but which all concentrate on digital implementations of the filter.

Moog patented the filter, specifying transistors as the active element in the ladder,
and so it was probably inevitable that sooner or later derivative filters using diodes in
the ladder would appear, which would thus not infringe the patent. The basic principles
of how the filter works remains roughly the same using diodes, but there are differences,
and exploitation of these appears to have led to a larger variety of diode ladder filters
than the original Moog design, which has tended to remain fairly static. The differences
extend into how the filters sound of course, and discerning ears are no doubt capable of
distinguishing the filter types from each other.

The main aim of this paper is thus to put on record some of the ways both types
of filter can be analysed, to look at some of the commonalities and differences, and
to examine the usual characteristics associated with such filters, for example the poles
and magnitude and phase responses etc. The main emphasis is on doing this just for
its own sake, rather than trying to read too much into the results in terms of how
the differences in the analysis might translate into how the filters sound (though this
is hard to resist on occasion!). Whilst most here is the original work of the author,
there isn’t anything which is that remarkable, and it is intended to be a compendium of
information above anything else—at the very least, some of the equations may give some
assistance in choosing capacitor values given the desired frequency range and expected
ladder currents, or how much gain to provide around the loop to ensure self-oscillation.

The first half of the paper concentrates on the original Moog ladder, initially deriv-
ing the transfer function from a large-signal standpoint by looking at the differential
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Figure 1: The differential, or long-tailed, pair

pair in some detail. The ‘large-signal’ moniker presents something of a quandary, as in-
evitably one makes approximations which move the analysis into the small-signal arena.
However it does seem useful as a means to distinguish it from the quite different route
using the simplified hybrid-π small-signal model which follows it. After examining the
characteristics of this filter, the same pattern is followed for the diode ladder filters
(with the exception that there is no ‘small-signal’ treatment).

2 Moog Transistor Ladder Filter

2.1 Large-signal development of the transfer function

In this section we derive the transfer function of the basic ‘core’ of the filter, by first
analysing the behaviour of the standard differential pair. The overall transfer function
of the filter including a feedback path is derived later in Section 2.3.

2.1.1 The differential pair

The relationship between the collector currents and differential voltage input to a dif-
ferential or long-tailed pair plays a key role in the following sections which derive the
various filter transfer functions. Thus in this section we take some time to derive and
examine this relationship: I find the analysis that utilizes the hyperbolic tangent to be
particularly succinct and elegant, as can be found in [9], but much of the missing detail
has been added here.

Suppose we have a pair of NPN transistors tied at the emitter, as shown in Figure
1: the common emitter voltage is VE, and from which point we draw current I . The
base voltages are V1 and V2, and the collector currents are I1 and I2, which we also
assume are the emitter currents (i.e. we neglect the base currents). Using a standard
simplification of the Ebers-Moll model (see for example [10]), with Is the saturation
current as normal, and writing kT/q as VT for convenience, we have

I1 ≈ Ise
V1−VE

VT and I2 ≈ Ise
V2−VE

VT , (1)
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which upon dividing gives

I2

I1
=

e
V2−VE

VT

e
V1−VE

VT

= e
V2−V1

VT , (2)

and of particular note here is the fact that throughout this paper we will be assuming
that our transistors and diodes are perfectly matched, and so their saturation currents,
Is, are identical. Substituting for I2 from the above in

I = I1 + I2

gives

I = I1 + I1e
V2−V1

VT , (3)

resulting in

I1 =
I

1 + e
V2−V1

VT

. (4)

Now we require the use of a subtle bit of hindsight, using the sort of trick that students
always decry—multiply top and bottom by 2, and ‘add zero’ into the numerator:

I1 =
I × 2

2
(

1 + e
V2−V1

VT

) =
I

2


1 + 1 + e

V2−V1
VT − e

V2−V1
VT

1 + e
V2−V1

VT


 =

I

2


1 +

1 − e
V2−V1

VT

1 + e
V2−V1

VT


 .

Now

tanh x =
ex − e−x

ex + e−x
=

e2x − 1
e2x + 1

,

from which it can be seen we get

I1 =
I

2

[
1− tanh

(
V2 − V1

2VT

)]
=

I

2

[
1 + tanh

(
V1 − V2

2VT

)]
. (5)

For I2 we have

I2 = I − I1 = I − I

2

[
1 + tanh

(
V1 − V2

2VT

)]
=

I

2

[
1 − tanh

(
V1 − V2

2VT

)]
,

and the symmetry between the currents is very obvious: current I splits equally between
the two transistors, but if the base voltage at either is higher than the other, than that
transistor switches on more, taking incrementally more than its half-share (given by the
tanh term), whilst the current in the other is decremented by the same amount.

The Taylor series expansion of tanhx is

tanhx = x − x3

3
+

2x5

15
− 17x7

315
· · · |x| <

π

2
,



T.E.Stinchcombe 7

Figure 2: Normalized collector currents, and a linear approximation

so when the differential input voltage is small, say within ±20mV†, we can make a linear
approximation

tanhx ≈ x,

so the collector currents become:

I1 =
I

2

[
1 +

V1 − V2

2VT

]
, (6)

and I2 =
I

2

[
1 − V1 − V2

2VT

]
.

In the following sections we shall often be interested in the difference between these
currents, and so simple subtraction yields

I1 − I2 =
I(V1 − V2)

2VT
(7)

= 19.2 I(V1 − V2),

where the constant 1/(2VT) evaluates to 19.2 with VT = 26mV. This last expression ef-
fectively gives the transconductance of the differential pair, i.e. iout/vin in terms of the
biasing current I , and something like it is frequently seen on operational transconduc-
tance amplifier (OTA) datasheets, where I is normally ‘Iabc’, the amplifier bias current.

If we plot the collector currents (equations (5)), we get the familiar ‘bow tie’
pattern—Figure 2 shows this, but to remove the absolute value of I the curves have

†We’re not going to be too rigorous here, suffice it to say that we just make the approximation ‘good

enough for most practical purposes’ !
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been normalized by plotting I1/I (red) and I2/I (blue); also shown is the linear approx-
imation to the current on one side, equation (6), to give a visual indication of how close
this approximation actually is to the original curve when the differential input voltage
is small (the green trace, which is again appropriately normalized).

In reviewing the above working we notice that few conditions are needed to make it
usefully general: if the ratio of two entities, generally currents, is the exponential of a
constant multiple of a third, generally a voltage difference,

I2

I1
= e

−∆V
VT ,

and if the currents sum to

I = I1 + I2,

and ∆V/VT is small, then the difference in the currents, ∆I = I1 − I2 is given by

∆I =
I∆V

2VT
. (8)

In particular, if the emitters of the transistors in the pair are not tied together so that
their emitter voltages are not equal, i.e. we have VE1 6= VE2 , and if the collector currents
still sum to give I , then equation (2) becomes

I2

I1
=

e
V2−VE2

VT

e
V1−VE1

VT

= e
V2−V1−(VE2

−VE1
)

VT ,

and so we immediately get

∆I =
I(∆V − ∆VE)

2VT
(9)

from (8), where ∆V = V1−V2 is the difference in base voltages, ∆VE = VE1 −VE2 is the
difference in emitter voltages, and ∆I = I1 − I2 the difference in collector currents. We
will make repeated use of this expression.

2.1.2 The filter core

The basic filter set-up shown in Figure 3, as per Robert Moog’s original patent [2],
consists of: ‘driver transistors’ Q1 and Q2, to which the differential input voltage is
applied, and from which current If , proportional to the cut-off frequency, is drawn; a
pair of ‘output coupling transistors’, Q11 and Q12, from which the differential output
voltage is taken; and in between, four filter stages, each consisting of a pair of transistors
with a capacitor tied between their emitters. The resistor chain biases the transistors
so that they are well separated and cannot become saturated, and as such play no role
in the filtering action. In this section we are concerned only with the ‘core’ of the filter:
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Figure 3: Basic circuit of the Moog ladder filter

later in Section 2.3 we will add a feedback loop and amend the overall transfer function
accordingly.

Throughout we assume that the base currents are negligible, and thus that through
each transistor the emitter current equals the collector current, and also that the tran-
sistors are perfectly matched so that the approximations made in the previous section
hold.

With so many currents and voltages involved for each of the stages, the notation for
analysing a circuit such as this poses something of a problem: since we will be mainly
interested in differences in voltages and currents between the sides of the ladder, I have
tried to chose a notation which reduces the number of symbols used, and so we move
to it as quickly as possible. Figure 4 shows the notation used about stage n: currents
in the ladder arms below the stage capacitor C are Inl and Inr (‘l’ and ‘r’ for left and
right), and so their difference is

∆In = Inl − Inr.
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Figure 4: Notation for transistor ladder stage n

The voltages either side of the capacitor are Vnl and Vnr, with difference

∆Vn = Vnl − Vnr,

and the currents above the capacitor, which pass through their respective transistors
(recall we are assuming the collector current equals the emitter current), are I(n+1)l and
I(n+1)r, so

∆In+1 = I(n+1)l − I(n+1)r.

Figure 5 shows the numbering of the stages against the basic core of the filter we are
going to use: current If , which sets the cut-off frequency, is drawn out of the bottom of
the ladder, and since no current can enter or leave the ladder except at the bottom or
top (as we assuming that the base currents are negligible), we must have

Inl + Inr = If

for all n. I have also made another slight simplification by removing the top-most pair
of transistors, and have instead taken the output from the last filter section—it is easy
to see that as the currents through such a top pair will be the same as through the last
filter section, the differential voltage at their emitters must also be the same as that
across the last filter section, and thus (analytically at least), removing them doesn’t
change anything (but whether doing so has implications of impedance/loading of the
last filter section by the take-off circuitry is a different matter!).

To derive the transfer function of a single stage, we have from Figure 4 that

I(n+1)l = I + Inl,

I(n+1)r + I = Inr,

which subtract to give

I(n+1)l − I(n+1)r = ∆In+1 = I + Inl + I − Inr = ∆In + 2I,
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Figure 5: Basic Moog ladder filter core and stage numbering

that is

∆In+1 = ∆In + 2I.

At the capacitor we also have

Vnl − Vnr = ∆Vn =
I

sC
,

so substituting for I in the above gives

∆In+1 = ∆In + 2sC∆Vn. (10)

Since I(n+1)l + I(n+1)r = If , the conditions for using (9) are met, noting that the base
voltages are equal, and the difference in emitter voltages is ∆Vn = Vnl −Vnr, so we have

∆In+1 =
−If∆Vn

2VT
.

Now we can rid ∆Vn from the above, giving

∆In+1 = ∆In − 2sC
2VT∆In+1

If
,
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which simply re-arranges to give

∆In+1

∆In
=

1

s
4CVT

If
+ 1

. (11)

This is the transfer function of a single stage. If we put Requiv = 4VT/If , we could write
this as

∆In+1

∆In
=

1
sCRequiv + 1

,

or better still as

∆In+1

∆In
=

1
s

ωc
+ 1

, (12)

where

ωc =
1

CRequiv
=

If
4CVT

,

or
fc =

1
2πCRequiv

=
If

8πCVT
. (13)

This is good for n = 1, 2, 3, 4, so to complete the transfer function, we need to look at
the input and output stages.

For the input driver pair let the input voltage be Vin = Vinl − Vinr, and with the
collector currents summing as I1l + I1r = If , we can apply (7) directly to get

∆I1 =
IfVin

2VT
. (14)

At the output at the top of the ladder let

Vout = Voutl − Voutr ≡ V4l − V4r = ∆V4.

Similar to stage n above, we have I5l + I5r = If , and can use (9) in the same manner to
immediately get

∆I5 =
−If∆V4

2VT
=

−If Vout

2VT
. (15)

For the complete transfer function, divide the Vout and Vin expressions just derived, and
insert 1 = ∆n/∆n for n = 2, 3, 4 repeatedly, and then substitute for the single-stage
functions from equation (12):

−IfVout

2VT

IfVin

2VT

=
∆I5

∆I1
, (16)
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which when cancelled gives

Vout

Vin
=

−∆I5

∆I1

=
−∆I2

∆I1
× ∆I3

∆I2
× ∆I4

∆I3
× ∆I5

∆I4

=
−1

(
s

ωc
+ 1
)4 .

As is usual practice, we normalize this by substituting s′ = s/ωc, to get

Vout

Vin
=

−1
(s′ + 1)4

,

and then simply drop the prime to finally get the normalized transfer function of the
filter core as

G(s) =
−1

(s + 1)4
. (17)

We will look at some of the characteristics of this transfer function in section 2.5,
after having added a feedback loop around it in Section 2.3. However, first we look at
a slightly different way of achieving the same end result.

2.2 Small-signal development of the transfer function

In this section we shall develop the transfer function by a slightly different route, starting
from small-signal representations of the filter stages. I find this process to be less
intuitive and less edifying than the previous method, as the act of setting DC sources
etc. to zero seems to make the analysis more removed from reality in my view. It does
have the advantage that the approximations we had to work quite hard for above arrive
‘pre-packaged’ in the model we use—this can also be seen as a disadvantage, as you have
little visibility of just what you have thrown away in making those approximations.

We will use a simplified hybrid-π model (see for example [10]), in which the small-
signal, i.e. AC component of the collector current, is given as gmvbe by a voltage-
controlled current source, where vbe is the (small-signal) base-emitter voltage, developed
across rπ, the resistance looking into the base. The transconductance gm is that at the
collector bias current of IC , and is equal to IC/VT , which in our case comes down to
gm = If/2VT .

Using a similar notational and numbering scheme as previously, though moving to
lower case, the resultant models for the input, filter, and output stages are shown in
Figure 6. As before we assume that the base currents are negligible, i.e. there are
no currents through resistors rπ, so they could have been shown disconnected from the
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Figure 6: Small-signal models: input (bottom), filter stage (middle), and output (top)

emitter nodes: however I found it useful to leave them in, as it helps track the sign-sense
of the voltages feeding the current sources.

The development closely mirrors that of the previous section, so I will not give all
the details. Starting with the filter stage itself, looking at the currents we have

i(n+1)l = inl + i,

i + i(n+1)r = inr

which subtract to give

i(n+1)l − i(n+1)r = ∆in+1 = inl + i − (inr − i) = inl − inr + 2i

= ∆in + 2i.

At the capacitor we have

vnl − vnr =
i

sC
,
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and by definition

i(n+1)l = −gmvnl and i(n+1)r = −gmvnr,

so

i = (vnl − vnr)sC = −
(i(n+1)l − i(n+1)r)sC

gm

= −sC

gm
∆in+1,

and on substituting for i in the expression above

∆in+1 = ∆in + 2i

= ∆in − 2sC

gm
∆in+1,

gives the transfer function for stage n as

∆in+1

∆in
=

1
2sC

gm
+ 1

.

Substituting for gm as

gm =
IC

VT
=

If
2VT

then gives

∆in+1

∆in
=

1

s
4CVT

If
+ 1

, (18)

which is identical to equation (11) in the large-signal development above.

For the input pair we have by definition of the model:

i1l = gmvinl and i1r = gmvinr ,

so

∆i1 = i1l − i1r = gm(vinl − vinr) = gmvin

that is

∆i1 = gmvin. (19)

Similarly for the output pair:

i5l = −gmv4l and i5r = −gmv4r,
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Figure 7: Block diagram of complete filter with feedback

and so

∆i5 = i5l − i5r = −gm(v4l − v4r) = −gmvout

that is

∆i5 = −gmvout. (20)

With equations (18), (19) and (20) the equivalent of (11), (14) and (15), it is easy to
see that if we follow the same process starting at (16), we will indeed end up with the
same transfer function for the filter core, equation (17).

2.3 Adding a feedback loop

The previous sections has been primarily concerned with the transfer function of the core
of the filter: however, to make a versatile and interesting-sounding filter, any practical
implementation will almost certainly have a variable-gain feedback path added in. How
this is achieved at the level of the transfer function, and how the feedback affects the
function is shown in this section.

Figure 7 is a simple block diagram of a complete filter, showing the transfer function
of the filter core as G(s), and with gain k feeding a proportion of the output Vout back
around to the input. The output of the filter is then simply

Vout = G(s)(Vin − kVout),

which is easily re-arranged to give

H(s) =
Vout

Vin
=

G(s)
1 + kG(s)

. (21)

If we substitute the transfer function of the core as

G(s) =
1

(s + 1)4
,
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noting that this is the negation of equation (17) (a notational convenience, but easily
effected by swapping the order of the output take-off at the top of the ladder), we get

Hstd(s) =

1
(s + 1)4

1 + k
1

(s + 1)4

,

which on clearing the fractions gives

Hstd(s) =
1

(s + 1)4 + k
, (22)

or occasionally it is seen as

Hstd(s) =
1

s4 + 4s3 + 6s2 + 4s + 1 + k

in expanded form (and where ‘std’ is an abbreviation of ‘standard’, for distinction with
those coming later). This is the transfer function of a filter consisting of four identical,
cascaded, buffered first-order sections, with an overall feedback gain amount k. Thus
not only does it apply to the Moog ladder filter being considered here, it turns out that
many other filters used in synthesizers share this transfer function, for example, many
built using the CEM3320 and SSM2040 filter chips (and probably the SSM2044 too),
and other circuits using four VCAs or OTAs, be they discrete or integrated—within the
synthesizer domain, it is actually pretty hard to get away from this function if the filter
is a 4-pole one (one notable exception being the diode ladders considered later).

2.4 Accuracy of the transistor ladder model

Before going on to examine the properties of the transfer function Hstd(s) (equation (22))
in more detail in the next section, it would seem prudent to check that it does model the
filter reasonably well, at some sort of level. To this end some simple SPICE simulations
were run in SIMetrix, and compared against data calculated from the transfer function
using Mathematica—whilst the SPICE AC analyses used will make some of the same
sorts of assumptions, for example linearizing the transistors about their bias points, it
will act as a fairly ‘gross’ check that the model is able to predict the behaviour of the
real circuit.

The simulation circuit used is shown in Figure 8. Much of the circuit has been
‘idealized’ so that we can concentrate on the effects of the filter core itself: the biasing
resistors have been replaced with simple voltage sources, to ensure that transistors in
the ladder are well separated, and with V 2 providing an AC ground, so lifting the input
pair off ground; feedback is provided by the voltage-controlled voltage source E1, whose
output feeds through a (large) capacitor C4, which allows for the differing DC levels
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Figure 8: Simulation circuit for accuracy check

there, then onto R1, rather arbitrarily chosen to prevent the AC signal being ‘grounded’
at V 2; DC current source I1 supplies the frequency-controlling current If ; all transistors
use the SPICE model for the CA3083, this being a practical contender for use in a real
circuit; all capacitors are 47nF, calculated as giving practical cut-off frequencies for If

ranging from around 10µA to 500µA. (Also note that no separate output transistor pair
is used, the output being taken directly from top filter section, as was assumed in the
analysis.)

Data was calculated in Mathematica by denormalizing Hstd(s), and switching from
angular frequency ω to simply f in Hertz. Thus the following was calculated:

20 log
∣∣∣∣Hstd

(
4CVT

If
2πfj, k

)∣∣∣∣ ,

for k = 3 and f ranging from 100Hz to 100kHz (and VT = 0.026V, C = 47nF). The
data was then exported from Mathematica and imported into SIMetrix, where it could
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Figure 9: Plots from simulation of circuit, red, vs. calculation of Hstd, blue

be plotted alongside the simulation results.

The results are shown in Figure 9, for six values of If = 10, 20, 50, 100, 200, 500µA,
and with k = 3 we get quite a large amount of ‘corner peaking’. These are generally in
good agreement, but it is clear that the frequency of the calculations is slightly higher
than the simulation—this seems to visually decrease a little with increasing If , to a
minimum perhaps around If = 100µA, and then start increasing again. In Section 3.4
later we will see that the equivalent for the diode ladders shows a much closer agreement,
leading me to think that this discrepancy is caused by the fact that the calculations
assume all the base currents are zero, whereas in the simulation (and indeed a real
circuit), some current will enter the ladder, and so have some impact on the DC biasing.
Either way, at the very least equation (13) provides a simple calculation for determining
the range cut-off frequencies in a design from the chosen C and range of If .

2.5 Poles and frequency responses

The poles of Hstd(s), i.e. the roots of the denominator, so solutions of (1 + s)4 +
k = 0, determine the shape of the frequency response, which is of some interest in
the musical/synthesizer setting. One wouldn’t normally expect to have the luxury
of being able to determine the poles of a fourth-order filter analytically, and would
probable opt for some numerical computation to determine them: however in this case
the denominator is relatively simple, and so it is possible to solve for the poles. Taking
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our cue from [4], proceed thus:

(s + 1)4 + k = 0

so

(s + 1)4 = −k

and then

s + 1 = (−k)1/4 = k1/4e
jπ(2m+1)

4 ,

where we have utilized the odd 8th-roots of unity, for m = 0, 1, 2, 3. Hence

s = −1 + k1/4e
jπ(2m+1)

4 ,

which may be alternatively written as

s = −1 ± k1/4e±jπ/4.

From this it can be seen that the complex exponential term means the poles are evenly
spaced in an ‘X’ pattern, at forty five degrees from the real axis, and the ‘−1’ term
shifts them all left, centering them about the point (−1, 0). When k = 0, all four poles
are at (−1, 0); as k increases they move out along the arms of the ‘X’, equidistant from
the point (−1, 0); at k = 4, the real component of the rightmost pair is zero, i.e. they
reach the imaginary axis, and the filter will be oscillating. Figure 10 shows the location
of poles on the complex s-plane (s = σ +ωj), and how they migrate for about 20 values
of k as it is varied from 0 to 4† (the offset axis scaling is for uniformity of comparison
with the plots of the diode filters yet to come).

The frequency responses of the filter (both magnitude and phase) are of course
essentially defined by the pole locations. The magnitude response is defined as |Hstd(ωj)|
or more usually as 20 log |Hstd(ωj)|, which is itself the intersection of the 2-dimensional
surface 20 log |Hstd(s)| with the plane which goes through the imaginary axis, and which
is perpendicular to the s-plane itself (set the real component, σ, in s = σ + ωj to
zero). It is a relatively simple matter to draw such surfaces using a package such as
‘Mathematica’: Figure 11 shows the surface for Hstd(s) = 1/((s + 1)4 + k) at k = 0.5.
The peaks in the surface are caused by the poles, which even though k is relatively small
still at 0.5, are already quite far apart from each other; the ‘slice’ through the surface

†To get the even spacing, k was varied as 4(n/20)4 for n = 0, 1, . . . 20, so the actual values of k are:

0.0, 0.000025, 0.0004, 0.002025, 0.0064, 0.015625, 0.0324, 0.060025, 0.1024, 0.164025, 0.25, 0.366025,

0.5184, 0.714025, 0.9604, 1.26563, 1.6384, 2.08803, 2.6244, 3.25803, 4.0.
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Figure 10: Poles of 1/((s + 1)4 + k), k = 0 to 4

Figure 11: 20 log |Hstd(s)| for k = 0.5
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Figure 12: 20 log |Hstd(s)| for k = 4

at the right-hand edge is the normal frequency response curve, 20 log |Hstd(ωj)|, but
note that the scaling along the imaginary axis, ω, is linear, and not the more normal
logarithmic one used for simple 2-D plots (which follow below). As k is still small,
the rightmost pair of poles are still some way from the imaginary axis, and it can be
seen that this results in a passband which is still quite flat, unlike in the following
figure. In the self-resonating condition, with k = 4, Figure 12 shows that the rightmost
pair of poles have now reached the imaginary axis, giving the large resonant peak in
the response, and because the poles are now so far apart, the surface is able to ‘sag’
between them, producing a considerable ‘droop’ in the passband.†

More traditional ‘Bode plot’ frequency responses are shown in Figure 13, for values
of k of 0, 0.5, 1, 1.5, 2, 2.5, 3, 4: k = 0 is the least ‘peaky’, at 0dB where it meets the
y-axis; k = 4 is the biggest peak, at approximately −14dB at the y-axis. These curves
immediately highlight several issues worthy of note. First, the ‘droop’ in the passband
as the resonance is increased is seen by many as big a failing of this type of filter, and
this feature provides an easy test to see if a filter is of this type: open the filter right
up, by setting a high cut-off frequency; input a signal at a frequency well inside the
passband; turn the resonance up, and if the level of the signal drops, chances are the
filter is of this type (and note diode ladders suffer similarly).

Secondly I think it highlights something of a ‘terminological issue’, which whilst it

†Animated gifs showing the smooth transition of the surface as the poles move due to varying k may

be viewed at my website: http://www.timstinchcombe.co.uk/synth/poles/poles.html
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Figure 13: Magnitude responses of 1/((s + 1)4 + k), various k

Figure 14: Magnitude responses of Hstd(s) at k = 0 and 4, and the asymptote ‘1/ω4’
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Figure 15: Phase responses of 1/((s + 1)4 + k), various k

my not have the direst of consequences, certainly adds a lot of ‘fog’ when discussing
these filters: what point in all these curves do we actually mean when we talk of the
cut-off frequency of the filter? The first-order filter concept of the ‘3dB’ or ‘half-power’
point doesn’t relate very well to higher-order cases once we introduce resonance into
the proceedings: certainly the k = 0 (flattest) curve in Figure 13 cuts ω = 1 at −12dB
(being 4×−3dB), but for k > 0, choosing ω at the point where the curve crosses −12dB
would result in all manner of differing ω values. Alternatively, choosing ω at the point
where the peak occurs will also clearly result in ω values which wander all over the
place. As unsatisfactory as it may seem, it seems we have to accept that all the curves
‘belong’ to ω = 1 (reminding ourselves we are dealing with a normalized function here),
on the grounds that the asymptote to the curves in the stopband passes through 0dB
at ω = 1 (which is equivalent to the ‘3dB’ rule multiplied up). (Visually trying to align
the asymptote to the curves in Figure 13 suggests this might not be the case, but if we
look further down into the stopband where the curves have stopped ‘bending round’,
the true picture is seen, as shown in Figure 14 where the asmyptote is drawn along
with two of the curves.) Of course to get the peaks to ‘line up’ better etc. requires a
different transfer function, i.e. we need a different filter!

Some phase responses of the function Hstd(s) are shown in Figure 15, for the same
values of k as used previously for the magnitude responses, except for the largest value
which is 3.9 and not 4 (the 180◦ ‘flip’ at ω = 1 for k = 4 is so severe it looks as
though the plot has been ‘doctored’ in some way!). The k = 0 curve is the flattest, each
curve becoming more contorted as k is increased. I currently have little idea as to how
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unremarkable or otherwise these plots might be.

3 Diode Ladder Filters

3.1 Introduction

Replacing the transistors of the Moog ladder filter with diodes results in a four-pole
filter which shares some similarities with the original filter, but which also has a lot
of differences. The main difference is probably the fact that each section is no longer
buffered from the next—this means that all of the relative simplicity of the original is
lost, resulting in a much less elegant looking transfer function (and which is considerably
harder to derive!).

In the early days, using a diode ladder filter was probably done to avoid infringing
Moog’s patent on the original filter ([2]): using diodes actually adds a little flexibility,
and so quite a lot of different configurations appear to have sprung up. The basic core
designs of some of these are shown in Figures 16 and 17, and they show a number of
features worthy of comment.

Firstly we note that there are a varying number of diodes at the top of the ladder:
with one diode, the Roland TB-303 (OK so it is a transistor, but analytically it is
the same as if it were a diode!); with two, the Practical Electronics Minisonic and the
Roland 100; and with three, the EMS filters and the Doepfer A-102. Because of the
way these diodes set the bias voltage down the ladder, using more of them increases
the basic gain of the filter, as will be seen below, and it also has a small impact on the
frequency response too.

Some of the designers have chosen to use a smaller capacitor at the bottom of the
ladder, typically half the value of the others (TB-303, Doepfer A-102 and Roland 100).
As of this writing I am not completely sure of the purpose of this—certainly we will see
below that it has minimal impact on the pole locations. (I suspect it might be for some
stability issue which I don’t currently comprehend.)

Several of the designs have extraneous diodes at the bottom of the ladder, between
the differential input pair and the first filter section (Doepfer A-102, early EMS, PE
Minisonic): these do not contribute to the filtering action, and so appear to be quite
redundant.

Two of the designs are actually five-pole filters—the later EMS and the Roland 100.
I didn’t become aware of them until some time after I had done the bulk of the analysis
in this paper, so they are not covered in detail. (The methods used below though are
fairly general, and so it should be a relatively easy matter to extend them to cover these
filters: thus their analysis is ‘left as an exercise for the reader’ as they say—perhaps
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Figure 16: Various diode ladder filter cores
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Figure 17: More diode ladder filter cores

some aspiring student might be willing to ‘fill in the blanks’?!) The 100Ω resistor in the
later EMS design actually introduces a zero into the transfer function, and we return
briefly to look at this in Section 3.6 later.

On seeing a degree of this variation in these circuits when I originally started out
on this analysis several years ago, I decided to make it reasonably general, so that it
would cover many of the different cases. To that end I allowed for a differing number
of diodes at the top of the ladder, and for the lower capacitor to be different from the
rest. However I was at that time working with a Doepfer A-102 as a then-believed copy
of the EMS filter, and was unaware of the five-pole types. I have now seen some EMS
VCS3 schematics, and also have the Analogue Systems RS500e ‘authorized copy’ of the
EMS filter, and have discovered that the A-102 doesn’t follow the EMS filter exactly,
particularly the capacitor ratios (but then in fairness to Doepfer I’m not sure that in
the end they intended it to be an exact copy anyway). Thus what I originally thought
to be the ‘EMS configuration’ of 3 diodes and the bottom capacitor halved turned out
not to be the case, and the A-102 is thus the only example I have currently seen which
is like this. However I decide to leave it in anyway, as it illustrates a point. There is
also a copy of an anonymous schematic (which is why I feel it worthy of mention) of
another EMS-like filter (3 diodes; equal caps) floating around on the Internet: this is
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Figure 18: Notation for diode ladder stage n

in fact from [11], published by Babani, whose series of books has a very recognisable
print-style once you know it!

The following section therefore works the transfer function in a semi-general sense,
deriving four cases in particular:

- one diode and equal capacitors: the simplest case. Done mainly as it allows a
cross-check against the results of others who have derived this transfer function
(though I don’t currently know of an actual example of this configuration, but
someone somewhere has probably built one!)

- one diode with the bottom capacitor halved: as the TB-303

- 3 diodes and equal capacitors: as the EMS filters

- 3 diodes and the bottom capacitor halved: as the A-102

The PE Minisonic configuration of 2 diodes and equal capacitors should be easily de-
ducible from these results, and as stated earlier, it shouldn’t be too hard to extend them
to cover the 5-pole filters too!

3.2 Transfer function derivations

In the transistor ladder, apart from the differential voltage across the capacitor aiding
the filtering action, the voltages down the ladder don’t really have a part to play, as
they are kept separated from each other by the chain of biasing resistors. In the diode
ladder this is a different matter though, as the top of the ladder sets the reference point,
and all voltages down the ladder derive from it. Thus in order to work the transfer
function out, all intermediate voltages need to be eliminated, and this appears to be
quite a hurdle to overcome. My solution to this problem is to define the differences in
voltage and current at each stage in terms of the stage above: one can then start at the
bottom and work up, eliminating all the intermediate values as you go. Figure 18 shows
the notation used about stage n, and which is similar to that used previously: currents
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Figure 19: Basic diode ladder core and stage numbering

in the ladder arms below the stage capacitor Cn are Inl and Inr , and so their difference
is

∆In = Inl − Inr.

The voltages either side of the capacitor are Vnl and Vnr, with difference

∆Vn = Vnl − Vnr,

and the currents above the capacitor are I(n+1)l and I(n+1)r, so

∆In+1 = I(n+1)l − I(n+1)r.

The full numbering of the stages against the basic core of the filter we are going to use
is shown in Figure 19: also note that, as the transistor case, we are drawing current If ,
which sets the cut-off frequency, out of the bottom of the ladder—and since no current
can enter or leave the ladder except at the bottom or top, we must have

Inl + Inr = If

for all n.
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Now, from Figure 18 we have

I(n+1)l = I + Inl,

I(n+1)r + I = Inr,

and subtracting gives

I(n+1)l − I(n+1)r = ∆In+1 = I + Inl + I − Inr = ∆In + 2I

so

∆In+1 = ∆In + 2I.

Also at the capacitor we get

Vnl − Vnr = ∆Vn =
I

sCn

so ridding I above gives

∆In+1 = ∆In + 2sCn∆Vn,

and re-arranging this gives

∆In = ∆In+1 − 2sCn∆Vn. (23)

We now seek to rid the stage n term, ∆Vn, from the right-hand side of equation (23).
If we use the standard diode equation, and write down the ratio of the (n + 1)-stage
currents, we get

I(n+1)r

I(n+1)l
=

e
V(n+1)r−Vnr

VT

e
V(n+1)l−Vnl

VT

= e
V(n+1)r−V(n+1)l−(Vnr−Vnl)

VT

= e
−∆Vn+1+∆Vn

VT ,

and as already noted, the currents sum to If , so we can use equation (9) to immediately
get

∆In+1 =
If

2VT
(∆Vn+1 − ∆Vn)

=
1
a
(∆Vn+1 − ∆Vn), say, where a =

2VT

If
,

or

∆Vn = ∆Vn+1 − a∆In+1. (24)
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Figure 20: Output stage notation for one and three diodes

(The symbol a is just introduced for notational convenience, in order to help reduce the
number of symbols that require tracking in the following working.) Now substitute for
∆Vn here into equation (23):

∆In = ∆In+1 − 2sCn(∆Vn+1 − a∆In+1)

which re-orders as

∆In = (1 + 2asCn)∆In+1 − 2sCn∆Vn+1. (25)

Equations (24) and (25) only contain voltage and current terms for stage ‘n+1’ in their
right-hand sides, and so we can now use them to work up the ladder. However before
we do so, it will help to sort out the input and output stages.

The input stage is easy—it is the same as the transistor ladder, so it is equation
(14):

∆I1 =
IfVin

2VT
=

Vin

a
.

The output pair is only a little more involved: work directly from the diode equations
for a single diode at the top, and then do three, from which the general pattern for any
number of diodes is easily seen. Referring to Figure 20, from the standard diode equation
we have

I5l = Ise
Vcc−Voutl

VT and I5r = Ise
Vcc−Voutr

VT . (26)

(For the two transistors in the TB-303 case, you get almost identical expressions, the
only difference being that the reference voltage is that on the base, rather than the
bias voltage that I’ve called Vcc here, and in any case it disappears in the next step!)
Dividing these two gives

I5r

I5l
= e

Voutl−Voutr
VT .
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Again as If = I5l + I5r (recall no current into or out of the ladder), this time we call on
(8) to get:

∆I5 = I5l − I5r = −
If (Voutl − Voutr)

2VT
= −Vout

a
, (27)

noting the subtle sign change (the common voltage is at the top and not the bottom!).
Next, for three diodes, write down the expressions for each diode on each side:

I5l = Ise
Vcc−V ′′

4l
VT

I5l = Ise
V ′′
4l−V ′

4l
VT

I5l = Ise
V ′
4l−Voutl

VT

I5r = Ise
Vcc−V ′′

4r
VT

I5r = Ise
V ′′
4r−V ′

4r
VT

I5r = Ise
V ′
4r−Voutr

VT ,

and then multiply down each side for the left and right expressions, and divide the right
by the left:

I3
5r

I3
5l

=
e

Vcc−V ′′
4r

VT e
V ′′
4r−V ′

4r
VT e

V ′
4r−Voutr

VT

e
Vcc−V ′′

4l
VT e

V ′′
4l

−V ′
4l

VT e
V ′
4l

−Voutl
VT

= e
Voutl−Voutr

VT ,

so

I5r

I5l
= e

Voutl−Voutr
3VT

Again conditions of equation (8) are met, but this time we need to modify the expression
using ‘3VT ’, and not ‘VT ’, thus giving

∆I5 = I5l − I5r = −
If (Voutl − Voutr)

2 · 3VT
= −Vout

3a
. (28)

Looking back at equation (27) it is clear to generalize to d diodes we need only write

∆I5 = −Vout

da
. (29)

(And we should also check that the conditions for the linear approximation used in the
derivation of (7) are still met—they will be, as the division by d > 1 actually makes the
tanh argument smaller, which helps.)

Now we can return to the business of recursively working up the ladder. Start with
the expression for the input

Vin

a
= ∆I1,
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and use equation (25) with n = 1:

Vin

a
= ∆I1 = (1 + 2asC1)∆I2 − 2sC1∆V2.

Some more notational pruning seems prudent: assume that only the first capacitor is
different from the rest, so write Cn = C for n > 2. Now rid ∆I2 and ∆V2 by using (25)
and (24) with n = 2,

Vin

a
= (1 + 2asC1)

(
∆I3(1 + 2asC) − 2sC∆V3

)
− 2sC1(∆V3 − a∆I3)

=
(
4a2s2C1C + 2as(2C1 + C) + 1

)
∆I3 −

(
4as2C1C + 2s(C1 + C)

)
∆V3,

and again for ∆I3 and ∆V3, n = 3:

=
(
4a2s2C1C + 2as(2C1 + C) + 1

)(
∆I4(1 + 2asC) − 2sC∆V4

)

−
(
4as2C1C + 2s(C1 + C)

)
(∆V4 − a∆I4)

=
(
8a3s3C1C

2 + 4a2s2(4C1C + C2) + 6as(C1 + C) + 1
)
∆I4

−
(
8a2s3C1C

2 + 4as2(3C1C + C2) + 2s(C1 + 2C)
)
∆V4,

and this time just ∆I4, from (23) with n = 4:

=
(
8a3s3C1C

2 + 4a2s2(4C1C + C2) + 6as(C1 + C) + 1
)
(∆I5 − 2sC∆V4)

−
(
8a2s3C1C

2 + 4as2(3C1C + C2) + 2s(C1 + 2C)
)
∆V4

=
(
8a3s3C1C

2 + 4a2s2(4C1C + C2) + 6as(C1 + C) + 1
)
∆I5

−
(
16a3s4C1C

3 + 8a2s3(5C1C
2 + C3) + 4as2(6C1C + 4C2) + 2s(C1 + 3C)

)
∆V4,

and finally (29) for ∆I5, and ∆V4 = V4l − V4r ≡ Voutl − Voutr = Vout:

= −
(
8a3s3C1C

2 + 4a2s2(4C1C + C2) + 6as(C1 + C) + 1
)Vout

da

−
(
16a3s4C1C

3 + 8a2s3(5C1C
2 + C3) + 4as2(6C1C + 4C2) + 2s(C1 + 3C)

)
Vout.

After a final gathering of terms, and leaving the expression up the wrong way, so as
to avoid having to split the long fraction across the line break, we arrive at a (fairly)
general (inverted) transfer function of:

−d
Vin

Vout
= 8a3s3C1C

2 + 4a2s2(4C1C + C2) + 6as(C1 + C) + 1

+ d
(
16a4s4C1C

3 + 8a3s3(5C1C
2 + C3) + 4a2s2(6C1C + 4C2) + 2as(C1 + 3C)

)
,

so

−d

G(s)
= 16a4s4dC1C

3 + 8a3s3
(
C1C

2(1 + 5d) + dC3
)

+ 4a2s2
(
C1C(4 + 6d) + C2(1 + 4d)

)
+ 2as

(
C1(3 + d) + C(3 + 3d)

)
+ 1.

(30)



34 Analysis of the Moog transistor ladder and derivative filters

We can now substitute for C1 and d into this and arrive at the transfer functions for
the different configurations. First take the simplest case, one diode at the top, so d = 1,
and all capacitors equal, so C1 = C. Re-arrange to get a slightly more familiar form:

G1(s) =
−1

16a4s4C4 + 56a3s3C3 + 60a2s2C2 + 20asC + 1
.

Now put

ω4
c =

1
16a4C4

,

so that
ωc =

1
2aC

=
If

4CVT
,

from which we have
fc =

If
8πCVT

,

to get

G1(s) =
−1

s4

ω4
c

+ 7
s3

ω3
c

+ 15
s2

ω2
c

+ 10
s

ωc
+ 1

,

and finally normalize the frequency to get

G1(s) =
−1

s4 + 7s3 + 15s2 + 10s + 1
. (31)

This result has been reported by others, so the fact that we have ended up with it here
is hopefully a partial validation that all the above algebraic wrangling is not entirely
incorrect! We will examine it in detail later, after we have worked some of the other
configurations.

For the TB-303 configuration of a single diode and the bottom capacitor half the
others, put d = 1 and C1 = C/2 into equation (30):

Gtb(s) =
−1

8a4s4C4 + 32a3s3C3 + 40a2s2C2 + 16asC + 1
.

So this time

ω4
c =

1
8a4C4

, giving ωc =
1

2
3
4 aC

=
If

2
7
4 CVT

,

so that

Gtb(s) =
−1

s4

ω4
c

+ 2
11
4

s3

ω3
c

+ 10
√

2
s2

ω2
c

+ 2
13
4

s

ωc
+ 1

,

and finally normalize and evaluate constants to get

Gtb(s) =
−1

s4 + 6.727s3 + 14.142s2 + 9.514s + 1
.
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Next, for the EMS-type configuration with 3 diodes and equal capacitors, i.e. d = 3,
C1 = C:

Gems(s) =
−3

48a4s4C4 + 152a3s3C3 + 140a2s2C2 + 36asC + 1
,

and this time

ω4
c =

1
48a4C4

, giving ωc =
1

2 · 3
1
4 aC

=
If

3
1
4 4CVT

, (32)

so that

Gems(s) =
−3

s4

ω4
c

+
19

3
3
4

s3

ω3
c

+
35√
3

s2

ω2
c

+ 2 · 3 7
4

s

ωc
+ 1

,

finally giving

Gems(s) =
−3

s4 + 8.335s3 + 20.207s2 + 13.677s + 1

on evaluating the constants.

Finally for the Doepfer A-102 configuration of 3 diodes and lower capacitor half the
others, so d = 3 and C1 = C/2:

Gd(s) =
−3

24a4s4C4 + 88a3s3C3 + 96a2s2C2 + 30asC + 1
,

so now

ω4
c =

1
24a4C4

, giving ωc =
1

2
3
4 3

1
4 aC

=
If

2
7
4 3

1
4 CVT

, (33)

which in turn gives

Gd(s) =
−3

s4

ω4
c

+
2

3
4 11

3
3
4

s3

ω3
c

+ 2
7
2

√
3

s2

ω2
c

+ 2
1
4 3

3
4 5

s

ωc
+ 1

,

and finally

Gd(s) =
−3

s4 + 8.116s3 + 19.596s2 + 13.554s + 1
.

3.3 Adding the feedback loops

In order to examine the effects that feedback has on each of the functions in the previous
section, we need to put each G(·)(s) into equation (21) in turn. In doing so I have again
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switched the sign in the numerators, in order to avoid the negative sign on the constant
in the denominator, to get the following:

H1(s) =
1

s4 + 7s3 + 15s2 + 10s + 1 + k
,

Htb(s) =
1

s4 + 6.727s3 + 14.142s2 + 9.514s + 1 + k
, (34)

Hems(s) =
3

s4 + 8.335s3 + 20.207s2 + 13.677s + 1 + 3k
,

Hd(s) =
3

s4 + 8.116s3 + 19.596s2 + 13.554s + 1 + 3k
.

Various features and facets of these functions will now be examined in the following few
sections.

3.4 Accuracy of the diode ladder models

As we did for the Moog transistor ladder, we now check some of these transfer functions
against a simulation, to ensure that they do model the filters they represent reasonably
well. First we do a TB-303-type filter, with the lower capacitor (literally) half the value
of the others, remaining at 47nF as before. The circuit used is shown in Figure 21, and
similar comments apply to the idealized elements as before. Of particular note is that
all the diodes are diode-connected CA3083 transistors—the significance of this will be
seen in a minute. De-normalizing expression (34) for the calculations gives:

20 log

∣∣∣∣∣Htb

(
2

7
4 CVT

If
2πfj, k

)∣∣∣∣∣ ,

and this time k needs to be slightly more for a similar amount of resonance, and was
taken as k = 10 for the plots. As before f ranges from 100Hz to 100kHz, and If

was stepped through 10, 20, 50, 100, 200, 500µA. The comparative plots show quite a
surprising degree of agreement, as seen in Figure 22, though again there is a tendency
for the calculated values to be too high in frequency as the current If gets bigger.

Now we come to the anomaly hinted at above: if we use a diode at the top of the
ladder which is different from the transistor type used for the input pair, then we get
more gain than is predicted by the model. This is shown in Figure 23, where the top
pair of diodes have been replaced with 1N4148 types (If = 100µA and no resonance, i.e.
k = 0): the difference between the curves in the passband is about 6dB; the curve at
approximately 0dB, which uses all the same transistors/diode-connected transistors is
what the model predicts (as shown by the blue trace). All manner of different behaviours
can be seen, curves shifting up or down, by replacing different pairs of transistors in
the ladder for 1N4148 types. I have not had the opportunity to get fully to the bottom
of this, but my suspicions are that the approximations using the standard ‘cut-down’
Ebers-Moll equations, at equations (1) and in particular (26), are too simplistic: I
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Figure 21: Simulation circuit for TB-303-type filter accuracy check

think maybe other parameters like the ‘emission coefficient’ may need to be included,
so that when the same transistors are used these cancel, but when we mix diodes and
transistors, they do not, and we get an extra gain factor, similar to the ‘3’ derived at
equation (28) (as the ‘3’, it would appear in the denominator of the exponential power,
and would generally be greater than 1).

As a second check of a simulation against the models, use an EMS-type filter: add
another pair of diodes in at the top of the ladder (in Figure 21, so again all diode-
connected CA3083, so as to avoid the previous problem); change all four capacitor
values to 15nF (the frequency response comes right down otherwise); set no resonance,
k = 0; and use the same values for If . The expression used for the calculations is:

20 log

∣∣∣∣∣Hems

(
3

1
4 4CVT

If
2πfj, k

)∣∣∣∣∣ ,



38 Analysis of the Moog transistor ladder and derivative filters

Figure 22: Plots from simulation of TB-303-type filter, red, vs. calculation of Htb, blue

Figure 23: Effect of diode vs. diode-connected transistor at top of ladder
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Figure 24: Plots from simulation of EMS-type filter, red, vs. calculation of Hems, blue

and the results are shown in Figure 24: again they show good agreement, but the point
to note is that the passband now shows the extra 9.5dB ≡ ×3 gain as predicted by the
model, and caused by the (now) three pairs of diodes at the top of the ladder.

3.5 Poles and frequency responses

Of the four functions developed in Section 3.3, in this section we will concentrate mainly
on the simplest, H1(s): whilst there are differences between the four, sometimes they
are not great, and in general they all share the same characteristics.

First we look at the poles of H1(s): at k = 0, these all lie on the real axis, paired
as (−3.532, 0) and (−2.347, 0), and (−1.000, 0) and (−0.121, 0). As k increases, both
pairs move toward each other, until when k is about 1.07, the right-hand pair meet
at (−0.48, 0), and then they become complex and break away from the real axis. At
k ≈ 2.04, the left-hand pair meet at (−3.076, 0), and thereafter they too become complex
and break away from the real axis. As k increases the poles arch away from each other:
at k ≈ 18.4, the right-most pair reach the imaginary axis, at which point the filter will
be oscillating—this pattern is shown in Figure 25†. The following Figure 26 shows these

†As with Hstd, a similar trick was used to get a nice-looking spacing between the poles for the

plot—k was varied as 18(n/30)4 for n = 0, 1, . . . 30, so the actual values for k are: 0.0, 0.0000222222,

0.000355556, 0.0018, 0.00568889, 0.0138889, 0.0288, 0.0533556, 0.0910222, 0.1458, 0.222222, 0.325356,

0.4608, 0.634689, 0.853689, 1.125, 1.45636, 1.85602, 2.3328, 2.89602, 3.55556, 4.3218, 5.20569, 6.21869,

7.3728, 8.68056, 10.155, 11.8098, 13.659, 15.7174, 18.0
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Figure 25: Poles of the transfer function H1(s)

Figure 26: Poles of H1(s) compared to those of Hstd(s)
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Figure 27: Asymptotes to poles of H1(s) for large k

poles overlaid with those of the Moog transistor ladder, from function Hstd, which shows
quite a difference: the initial nearness of the right-most diode pole to the imaginary
axis (at k = 0) means that the passband drops off much sooner than the Moog filter,
and when combined with the increased distance to the left-most pair means that the
‘corner’ is much less pronounced; also note that the point where the diode poles cross
the imaginary axis is a little offset above ω = 1—this is reflected in later curves of the
amplitude response, where the peaks are offset, and also the point where the abrupt
change in phase occurs in the phase response.

Whilst looking at some general feedback and control systems theory I discovered
that the 45◦ ‘X’ pattern of the Hstd poles isn’t just a facet of this (fairly standard)
transfer function, but it is actually a facet of four-pole filters per se (and specifically
four poles and no zeroes). This can be seen if we see what happens in the diode case
when the poles have moved much further away from the real axis: at large distances they
become asymptotic to a pair of lines that indeed cross in an ‘X’, as is shown in Figure
27, which plots the poles out to about k = 20, 000. The point where the asymptotes
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Figure 28: The surface 20 log |H1(s)| at k = 0

cross is known as the ‘centre of asymptotes’, and is given (in this case) by the mean of
the poles at k = 0, i.e.

σc =
−3.532− 2.347− 1.000− 0.121

4
= −1.75.

Looking at the surface 20 log |H1(s)| for k = 0 in Figure 28 shows how the poles are
strung out along the real axis, and the nearness of that at (−0.121, 0) to the imaginary
axis, makes the frequency response (the slice down the imaginary axis) fall off much
sooner than that for the transistor ladder (though as before, note the scaling along the
imaginary axis is linear). The next Figure 29 shows the surface at k = 1.6, so the right
pair of poles has just broken away from the real axis, but the left pair are still on it:
this is starting to look more similar to the transistor one, and note that the passband
has also started to droop well below 0dB, as the transistor one does too.†

The amplitude response with frequency is shown in Figure 30: this shows the same
general trends as Hstd(s) of the Moog ladder, but note the greater variation over the
vertical scale (here I have plotted to -50dB; the equivalent Moog one is only to -40dB,
and appears considerably less ‘spread out’ vertically). (The values of k are 18n/4, where
n = 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, and so are sort of proportionally the same as the Moog plot.)
As mentioned previously, also note that the peaks tend to come to a point at a value of
ω just above 1. The quicker entry into the stopband, and the more gentle roll-off as we

†Again, some animated gifs of these surfaces may be found at my website at:

http://www.timstinchcombe.co.uk/synth/poles/poles.html
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Figure 29: The surface 20 log |H1(s)| at k = 1.6

Figure 30: Magnitude responses of H1(s), various k
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Figure 31: Comparison of diode (red) and transistor (blue) magnitude responses

go ‘round the corner’ is emphasized in Figure 31, which shows the no-resonance, k = 0,
plots for both the diode ladder and transistor ladder together: it is this gentler slope
that causes the diode ladder to sometimes be referred to as an ‘18dB filter’—a gentler
slope it may be, but calling it a ‘3-pole, 18dB/octave’ is at best misleading, and at
worse simply incorrect; further into the stopband it clearly re-joins the transistor curve,
showing its proper 4-pole, 24dB/octave descendancy.

Phase responses of H1(s) are shown in Figure 32, and are broadly similar to the
Moog equivalent, apart from the shift in the position of the abrupt phase change at
high k, as already noted.

We now move on to consider some of the differences between the various diode ladder
configurations, starting with the effect of the three diodes at the top of the ladder (EMS-
type) versus just the one (‘standard’ and TB-303-type). Because of the way that the
d = 3 factor affects the denominator of the transfer function expression (30) in forming
Hems(s), there is a significant impact on the left-most, non-dominant pole pair, as can
be seen when we overlay the poles of H1(s) and Hems(s) in Figure 33. The actual pole
locations for k = 0 are:

Hems : (−4.530, 0), (−2.756, 0), (−0.966, 0), (−0.083, 0)

H1 : (−3.532, 0), (−2.347, 0), (−1.000, 0), (−0.121, 0).

The increased distance of the non-dominant pole pair from the imaginary axis means
that the magnitude response of the EMS-type filter is quite a bit flatter, as is seen when
this is compared against the standard case, shown in Figure 34. Note that to make this
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Figure 32: Phase responses of H1(s), various k

Figure 33: Poles of Hems(s), red, compared to H1(s), blue
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Figure 34: Magnitude responses: Hems red, H1(s) (shifted), blue

a fair comparison, as the EMS-type filter has the extra gain due to the three diodes, the
H1 curve has had an extra 9.54dB (≡ ×3) added to it, to shift it up to be at the same
point at the left of the plot. This change thus looks like a significant difference that
might be worth having (in order to keep the filter ‘different’ from the competition).

Another minor difference for the EMS-type filter is that the feedback gain needed
to make the filter oscillate is quite a lot less: the right-most poles reach the imaginary
axis at a value of k of about 9.8, as compared to the value of 18.4 for H1.

We now consider the effects of halving the value of the bottom capacitor in the ladder,
by comparing the functions Hems(s) and Hd(s), the latter having the configuration with
the bottom capacitor halved. Intuitively, halving the bottom capacitor should increase
the cut-off frequency: the impedance of the capacitor doubles, and so more of the signal
(at a fixed frequency) will make it up the ladder to the output, rather than being shorted
through the capacitor. The analysis bears this out: from expressions (32) and (33) for
the cut-off frequencies of the two functions, at any particular If , we clearly have

ωc d =
If

2
7
4 3

1
4 CVT

>
If

3
1
4 4CVT

= ωc ems.

However the normalization process will remove this shift, and looking at the amplitude
responses at zero resonance, there is hardly any difference to be seen at all, as Figure
35 shows. This suggests that halving the capacitor causes a shift in the frequency
response which might easily be removed by a trim pot for example, placing you back
where you started from. I’ve seen the notion expressed in several places on the Internet



T.E.Stinchcombe 47

Figure 35: Comparison of magnitude responses: Hd(s), red, and Hems, blue

that halving the capacitor ‘shifts it’s pole up an octave’, hence increasing the cut-off
frequency. Simply examining the poles exposes the fallacious nature of such a claim,
and again demonstrates why there is so little difference between the responses:

Hems : (−4.530, 0), (−2.756, 0), (−0.966, 0), (−0.083, 0)

Hd : (−4.220, 0), (−2.799, 0), (−1.014, 0), (−0.084, 0),

being for k = 0—these and others for various k are shown in Figure 36. From this we
see that all the poles have moved, the left-most pair more so than the right-most, which
hardly move at all. If we take the transfer function of a fourth-order filter, double one
of its poles, form the corresponding function and re-normalize it, the doubled pole ends
up as 2

3
4 times the original, and the others as 2−

1
4 times their original values†. If we do

this to each pole in turn of Hems(s), the values we get are:

(−7.619, 0), (−2.318, 0), (−0.812, 0), (−0.070, 0),

(−3.810, 0), (−4.636, 0), (−0.812, 0), (−0.070, 0),

(−3.810, 0), (−2.318, 0), (−1.625, 0), (−0.070, 0),

(−3.810, 0), (−2.318, 0), (−0.812, 0), (−0.140, 0).

†If the poles are originally −p1,−p2,−p3 and −p4, and we double p1 so that the denominator is

now (s/(2p1) + 1)(s/p2 + 1)(s/p3 + 1)(s/p4 + 1), to re-normalize put s′4 = s4/(2p1p2p3p4) = s4/2 as∏
pi = 1 by the original normalization, so substitute s = 2

1
4 s′, then drop the prime to get(2

1
4 s/(2p1) +

1)(2
1
4 s/p2 + 1)(2

1
4 s/p3 + 1)(2

1
4 s/p4 + 1)—the factors giving the new poles are clear, and their product

is again 1.
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Figure 36: Poles of Hd(s), red, compared to those of Hems(s), blue

It is clear that the poles of Hd(s) look nothing like any of these patterns, thus apparently
nullifying the notion at a stroke. The reason is also fairly obvious: unlike the Moog
transistor ladder, where the filter sections are effectively buffered from each other, in a
diode ladder this buffering effect is just not there, and hence the poles do not exhibit
the kind of independence that would be necessary to support the notion.

The question then remains as to why some designers have decided to halve the value
of the bottom capacitor. At the moment I can only speculate on such a motive, but
I suspect that it may be due to some sort of stability issue of which I am currently
unaware, and hence that I’m certainly not in a position to comprehend!

3.6 Later EMS 5-pole filter with zero

It was mentioned earlier that the later EMS filter is actually a five-pole design, and that
the resistor in series with the extra capacitor gives the transfer function a zero. We will
have a quick (read ‘non-rigorous’ !) look at how this arises. First, simple simulation
quickly reveals the presence and rough location of the zero, as seen in Figure 37 (at
If = 50µA and no resonance). It can be seen that the 5-pole trace (green), turns back
up at around the 10kHz mark, just as it is starting to distinguish itself from its 4-pole
brother (the red trace), and at higher frequencies, the two lines appear to be parallel.
It thus looks like the 100Ω resistor combines with the extra 100nF capacitor to form a
zero: indeed, calculating

f =
1

2πRC

with these values yields 15.9kHz, which seems to back up the assertion.
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Figure 37: Early EMS 4-pole response vs. later 5-pole with zero

To get a very rough feel for how this happens, I looked at what the transfer function
for a single transistor stage might look like with a resistor in it, by substituting for I

from

∆Vn = I

(
R +

1
sC

)

rather than

∆Vn =
I

sC

as used in equation (10), to get

∆In+1 = ∆In + 2
sC

sCR + 1
∆Vn

instead. Then when ∆Vn is eliminated and the terms re-arranged, rather than the
‘1/(s + 1)’ of equation (11) we get

∆In+1

∆In
=

sCR + 1

sC

(
4VT

If
+ R

)
+ 1

,

which shows a zero at the frequency we guessed above, and clearly through all the
machinations in arriving at the transfer function (17), assuming it is at stage 1 (or in
fact any stage), this zero will remain in the numerator, and so be a zero for the whole
thing. I suspect the mechanism for introducing the zero in the diode ladder is extremely
similar, despite all the lack of buffering etc., and so I am fairly certain that something
similar to this is how it arises there too.
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4 Conclusions

We have analysed the Moog transistor ladder filter and several of the derivative diode
ladder filters, derived their transfer functions, and looked at their main characteristics,
such as poles and frequency responses etc. Whilst this is interesting for its own sake,
it doesn’t necessarily tell us how to design filters that are musically interesting: gross
differences in these characteristics are likely to indicate that the filters will sound differ-
ent, but similarities may not be an indicator that two filters will sound the same. For
example I suspect the ancillary envelope circuitry around the TB-303 filter, with all its
complex interactions, plays a major role in shaping what people regard as the ‘legendary
sound’ it makes, as much or maybe more than, the actual filter core examined here.

The diode ladder model suffers from some issues with regards to the matching (or
otherwise) of the parameters of the diodes in the ladder versus the transistors in the in-
put and/or output stages, but my suspicions are that these could probably be accounted
for easily enough. The true motive for the sometimes-seen halving of the bottom capac-
itor (in the diode ladders particularly) is still not clear, as from what has been presented
here, it seems to have little impact on the filter responses.
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