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Abstract

A complementary set of sequences is that for which the sum of the aperiodic
auto-correlation functions across all sequences in the set is zero except at the
zero shift. They find utility in a wide range of applications, including that of
Orthogonal Frequency Division Multiplexing (OFDM), a method of transmitting
data simultaneously over a large number of frequencies. Sequences for OFDM
have an associated parameter called the ‘peak-to-mean envelope power ratio’
(PMEPR), and sequences from small complementary sets have low PMEPRs,
and so are attractive for engineering reasons.

This thesis follows up aspects of recent results of Davis and Jedwab, and
Paterson, who give explicit constructions for complementary sets of sequences of
length 2™ over Z, (q even). Using techniques deriving from the algebraic normal
form of the generalized Boolean functions that represent the sequences, a number
of results concerning auto- and cross-correlations are proved, resulting in classes
of sequences for which: the auto-correlation functions are the same; pairs of
cross-correlation functions sum to zero, or are the same; pairs of cross-correlation
functions sum to zero except at one shift; pairs of auto-correlation functions sum
to zero except at the zero shift and one other shift. These results are then used
to prove a conjecture of Paterson (concerning the maximum PMEPR of certain
sets of sequences) for two specific cases, and to show that it is true in many
others. A new lower limit on PMEPR is also developed that shows that the
conjecture cannot be true in general.

Complementary sets are also manufactured from pairs of sequences given by
the construction, thus demonstrating the structure that is inherent within such a
pair. By examining the effect of the inverse Gray map on algebraic normal form,
it is shown that a complementary pair from the construction over Z, remains a
complementary pair when mapped to Z4 by the inverse Gray map.
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Chapter 1

Introduction and Background

1.1 Introduction and Overview

Orthogonal Frequency Division Multiplexing (OFDM) is a technique for trans-
mitting data simultaneously on a number of sinusoidal waveforms of different,
equally spaced frequencies. It has properties that are attractive to a number of
different applications, but of course there are inevitably drawbacks. One of these
is that the data to be transmitted essentially determine the relative phases of
the sinusoids, and when the peaks (or troughs) of the sinusoids line up, so that
they add most constructively, it is possible to get peaks in the signal level which
are many times that of the average level. A peak in the signal level equates to a
peak in the power of the signal, and in order to avoid distortion to the signal the
equipment being used has to be able handle these high power levels. This means
that for a large percentage of the time the equipment is operating at levels very
much below its maximum capacity, which is inefficient. Thus it is very desirable
to reduce the gap between the peak and average power levels. Unfortunately the
problem of determining the maximum value of the sum of a number of sinusoids
of different frequencies is an old and tricky one which so far has defied analytic
solution.

For OFDM the problem can be ameliorated by avoiding those combinations
of phases which are known to result in large peaks in the power. This implicitly
requires some form of coding (which in turn will introduce redundancy), i.e.
mapping the source data to some set of data that is more suitable for actual
transmission. The problem then shifts to determining which combinations of
phases do result in large peaks. An exhaustive search through all possibilities
to identify suitable combinations, even if this can be achieved in a sensible time
frame, is not seen as a very practical solution. However it turns out that if
the data to be transmitted is in fact a Golay complementary sequence, then the
power of the resulting signal is subjected to an upper bound which is sufficiently
low to be of practical significance. A Golay complementary sequence is one of
a pair for which the sum of the aperiodic auto-correlation functions at all non-
zero shifts is zero. That this property leads to the upper bound was published
by Popovic in 1991 [36], but even then did not completely resolve the problem
because generally such sequences were generated via recursive methods which
are not very practical. More recently, however, Davis & Jedwab have devised a

10



Ch1 Introduction and Background 11

deterministic method of constructing Golay complementary sequences of length
2™ over alphabets Zqn, based on the algebraic normal form representation of
certain quadratic generalized Boolean functions, [10, 11]. (As their name sug-
gests, these functions are just a generalization of ordinary Boolean functions,
the sequence being all values of the function ordered in a natural way.) The
functions so constructed result in a number of schemes for coding the data for
OFDM transmission for which the power is tightly bounded, and which addi-
tionally allow for error correction. Paterson then developed and extended these
ideas for sequences over Z, (¢ even), providing bounds on the power for a wider
range of quadratic generalized Boolean functions, [33].

In [33], and in a preliminary version which preceded it, [32], Paterson de-
veloped some techniques, most notably including one termed restriction, for
manipulating the cross- and auto-correlation functions of generalized Boolean
functions. These techniques are used effectively to arrive at his results, and a
number of open problems are also put forward. This thesis builds upon and
expands these techniques, and studies one of the central open problems in [32]
in detail, and also presents a number of other results, which are now outlined.

A quadratic Boolean function is usefully represented as a graph, the edge
between vertices 7 and j being present in the graph if the (order 2) term z;z;
is present in the function. Performing the restriction operation on the function
results in vertices in the graph being ‘deleted’, possibly leaving others discon-
nected, or ‘isolated’. In [32] it is conjectured that an operation that deletes some
vertices and leaves others isolated, for a certain class of functions, implies that
the power of the sequences corresponding to the functions are limited by a spe-
cific upper bound. The only proof offered in [32] was for a special case resulting
in a single isolated vertex. This conjecture is studied in detail in Chapters 2,
3 and 4. The conjecture is stated in Chapter 2, and by constructing 2 pairs of
functions whose respective cross-correlation functions sum to zero everywhere
apart from one shift, it is shown that not only is the conjecture true for some
special cases resulting in 1 isolated vertex, but that it is also true for some
special cases resulting in 2 isolated vertices. The cross-correlation result is also
used to construct simple functions that have the ‘near’ Golay property in that
their out-of-phase auto-correlations sum to zero except at one shift. In Chap-
ter 3 pairs of functions are constructed which share the same auto-correlation
function, and repeated application of this result for specific types of quadratic
functions leads to a refinement of one of the key results in [32, 33], concerning
complementary sets. This result in turn is then used to construct functions with
any number of isolated vertices which in fact satisfy the bound of the conjecture.
The ideas surrounding the existing lower bounds on power are extended, using
the technique of restriction, to provide a new lower bound on power in Chapter
4. Some examples are then manufactured, all having 3 or more isolated vertices,
for which this lower bound is greater than the upper bound on the power spec-
ified by the conjecture, thus showing that it cannot be true in the general case.

In Chapter 5, by manufacturing pairs of functions whose cross-correlations
sum to zero at all shifts, new constructions for complementary sets of functions,
derived from the complementary pairs of the Davis & Jedwab construction, are
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presented. This also results in a non-trivial construction of pairs of functions that
share the same cross-correlation function. In Chapter 6 it is shown, somewhat
surprisingly, that pairs from the construction over Zo, under the action of the
inverse Gray map, remain as complementary pairs over Z,.

Conclusions and some thoughts on possible future work are presented at the
end of the thesis.

The remainder of this chapter is devoted to a detailed exposition of all the
background theory outlined above. In particular the properties and features of
the technique of restriction are explored in greater depth than that given in
[32, 33], where the technique was introduced. Basic definitions of the various
rudimentary aspects of graph theory and coding theory that are used throughout
the thesis are recalled where necessary (viz: edges, vertices, degree/valency,
paths etc.—see for example [3]; Hamming weight, coset of a code etc.—see for
example [21]).

Major references for this thesis are reports [32] (and its successor [33]) and
[11]. Papers corresponding to these were submitted to the appropriate journal
shortly after their publication, but it was not until the latter stages of prepara-
tion of the thesis that these finally appeared as [34] and[12].

1.2 General Notation

This section merely catalogues some notation conventions generally used
throughout the thesis. More specialized notation will be established in sub-
sequent sections as and when needed. An index of notation appears after the
‘List of Figures’ at the end of the preliminary section of the thesis.

A primitive ¢ root of unity is denoted by w, e.g. w = €27/,
Bold-faced lower case letters generally represent a Z,valued vector, with its
coordinates in normal type, e.g.

a=(ap,a1,.--,an-1), @ €2ZLg i=0,1,...,n—1.
Bold-faced upper case letters generally represent a complex-valued vector, e.g.
A:(Ao,Al,...,An_l), AiEC, 1=0,1,...,n—1,

where, in particular, A is the complex-valued equivalent of a when A; = w®,
1=0,1,...,n— 1.

The complex conjugate of a complex-valued entity A is denoted as A*, whilst
that of an entire vector is

AT = (A5 AL ALy).

14in—1
The reverse of vector A is denoted
A= (An—1,4n—2,...,40).

The ‘1’s complement’ of a binary word ¢ = cgcy -+ - cx—1 € {0,1}*, i.e. the word
with 0’s for 1’s and vice-versa, will be denoted by €, i.e. € = ¢y¢1 - - - Cx_1 where
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¢i=1-¢ (=14 ¢ mod 2) for all s.

For clarity in examples, rather than separate the coordinates of a vector with
commas, they may simply be concatenated, e.g. (00110011) may be written
instead of (0,0,1,1,0,0,1,1).

The convention of writing + for 1 and — for —1 may be adopted when writing
a real-valued binary vector, i.e. (1,—1,—1,1) becomes (+ — —+).

Where equations are labelled, they are numbered sequentially within each
chapter as (z.y), where z is the chapter number and y is the equation number;
theorems, lemmas, corollaries and examples etc. are numbered similarly in a
single sequence within each chapter. The end of a proof, definition, example
etc. is denoted with a [.

1.3 The Aperiodic Correlation Functions and their
Properties

This thesis makes much use of the discrete aperiodic cross- and auto-correlation
functions: their definitions and properties are given in this section.

Let A = (A(),Al, e ,An—l) and B = (B(),Bl, . aBn—l) be two length n
complex-valued vectors, and let £ denote an integer. Then the aperiodic cross-
correlation function of A and B is defined by:

(n—1—£
> ABf, 0<i<n
i=0
_ ) n—-1+¢
(A, B)(E) = > A Bf —n<£<0
=0
0 otherwise.

\

The complex conjugate of C(A,B)(¢) will be written as C*(A,B)(¥).

Putting B = A, we obtain the aperiodic auto-correlation function of A:
A(A)(6) = C(A, A)(D).

Since A(A)(—£) = A*(A)(¢) (see the following theorem) it is normal practice to

only consider the auto-correlation for £ > 0.

Swapping and/or reversing the vectors in a cross- or auto-correlation function
results in a function that bears a simple relationship to the original. These
very useful and well known results are gathered together for convenience in the
following theorem:

Theorem 1.1. Let A and B be length n complez-valued vectors. Then for every
integer £ in the range —n < £ < n we have:

(i) C(B,A)(t) = C*(A,B)(-¥)
(i) C(A,B)
(iii) C(B,A
)
)

~

(
(

) = C(
,A)(€) = C7(A,
(1w A(A)(—0) = A*(A)(¢
(v A(A)(0) = A(A)(¢
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Proof. (i) For 0 <4< n

n—1-—¢ n—14+(—%) .
Z BiAj = ( > AH,Z)B;> = C*(A,B)(-0).
i=0
For -n<£4<0
n—1+¢

=Y moai=( Z e ») =C(A,B)(-0).
=0

(ii) We have A; = A, 1 ;and B; = B, 1 ;. Thenfor 0 <4< n
o n—l—é__ n—1—¢
C(A,B)( Z AiBiyy = Z Ap 1 iBh_i_(ite)
=0 =0

and putting j =n—1—1—/¢

n—1-¢ n—1+(—2)
= 2 AuBi= > AiyBi=CAB)(-D.
; pard
For —n <£<0
o n—1—|—£_ . n—1+¢
CAB))= >, 4 Bi= Y A, 1 oBri
i=0 i=0

n—1+¢ n—1—(—£)
Y am = Y 4By =AY
7=0 Jj=0

(i)

C(B,A)(¢) = C"(A,B)(-0) by (i)

=C*(A,B)(¥) by (ii)

(iv) put B = A in (i).
(v) put B = A in (iii). O

In addition these relationships are further simplified when both A and B
are real-valued vectors, as any complex conjugation then disappears. In partic-
ular this is the case when A and B are both binary vectors, i.e. when there
coordinates just take the values +1 or —1.

Generally throughout this thesis the coordinates A; of the vector A will be
derived from a Zg-valued vector a, i.e. a = (ag,a1,...,a,—1), with a; € Z4 and
A =w%, i=0,1,...,n — 1, where w = e2/1 ig a primitive ¢'* root of unity.
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There are two consequences of this with respect to the auto-correlation function
for such vectors: firstly, at the zero shift we simply get

n—1 n—1 n—1
AA)(0) =) wh(w™) =D wieT% =) 1=n.
1=0 1=0 1=0
Secondly, more generally we have
n—1-4¢
[AA) O] =] Y whiw
i=0
n—1-4¢
< Z |w“¢w_“i+‘f‘
i=0
n—1-4¢
= Z |w‘” w—a¢+z‘
i=0
n—1-4¢

=) 1-1=n—¢
1=0

so |[A(A)())| <n—Lfor1<l<n—1.

1.4 Golay Complementary Sequences
The definition of Golay complementary sequences is now given:

Definition 1.2. A set of N length n complex-valued vectors {Ag, A1,..., Ay 1}
is said to be a Golay complementary set if

A(Ao)(®) + A(A)(®) + -+ A(An_1)(€) =0, L0,

A Golay complementary set of size 2 is called a Golay complementary pair,
and any sequence in such a pair is called a Golay complementary sequence.
This terminology is also applied to the Zgvalued vectors {ag,ai,...,ay—_1}
if the A; derive from them, that is if A; = (4;0,451,-.-,4jn-1) and
a; = (a0,aj1,---,8jn-1), § =0,1,...,N — 1, with a;; € Z; and A;; = w%+,
i=0,1,...,n — 1, where w = 2™/ ig a primitive ¢'* root of unity. As noted
above, in this case we have A(A;)(0) = n for all j, and so the sum across the
set at the zero shift is

A(A0)(0) + A(A1)(0) + -+ + A(AN-1)(0) = Nn.
]

Binary Golay complementary pairs were introduced by Golay in [18] as part
of his work on infrared multislit spectrometry; complementary sets were intro-
duced (independently) in [40, 46]. They have application in a diverse range of
areas including radar, sonar, navigation etc.: a comprehensive survey of com-
plementary pairs and sets may be found in [14].
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1.5 Orthogonal Frequency Division Multiplexing

In this section a brief synopsis of those aspects of OFDM transmission that
are relevant to this thesis are given (a detailed treatment being well beyond the
scope of this thesis; for further detail see for example [4, 9]). OFDM is sometimes
termed Multicarrier Modulation (MCM), or Discrete Multitone (DMT).

OFDM schemes allow for the simultaneous transmission of data on a number
of sinusoidal waveforms, or carriers, of differing but equally spaced frequencies.
The properties they exhibit make them suitable for transmission in multipath
and fading channels, and they have been proposed for such uses as mobile land
communications, digital audio broadcasting and high speed modems for HF radio
[4]. The principal drawback of such schemes is that when the peaks (or troughs)
of the sinusoidal carriers line up, so that they add most constructively, the peak
signal may be many times the average. The equipment being used has to be
able to handle the large peaks when they occur, which may be infrequently, and
so for most of the time it may be operating at well below its maximum capacity,
which is inefficient. Thus it is desirable to keep the ratio of the peak signal level
to the average as low as possible.

Suppose that the data to be transmitted at some particular symbol rate
is a codeword (ao,ai,...,an-1), aj € Z4, and the n carrier frequencies are
fi=fo+3ifs,7=0,1,...,n— 1, where fy is the frequency of the first carrier,
and f; is the spacing of the frequencies and which is an integer multiple of the
symbol rate. With w = ¢27/4 a primitive ¢ root of unity, write Aj = w%, and
A = (Ag,A1,..., A, 1). Then the transmitted OFDM signal is the real part of

the complex signal
n—1

S(A)(t) =) Ajeriliorifolt, (1.1)
J=0
The data a; determine the relative phases of the sinusoids, as is seen by simply
expanding

Re[A;e2mi(fotils)t | = Re[e2miaj/ag2milfotifs)t ]
= cos (27T(f0 +jfs)t+ 27mj/£])a

so in the binary case for example, ¢ = 2, a; € {0,1}, and 27a;/q is simply 0 or
7; thus the data merely gives ‘+’ or ‘—’ the cosine wave which is the j* carrier.
If A is the ‘all one’ vector, (1,1,...,1), the signal can be seen to consist of cosine
waves which are all in phase at time ¢ = 0, i.e. all the peaks line up to give the
maximum possible signal amplitude of n (and thus the signal from the all one
vector has precisely the large peaks that we wish to avoid).

(From an engineering standpoint the transmitted signal is basically the in-
verse (discrete) Fourier transform of the data A. In practice the data would
generally have a length which is a power of 2 (as is the case throughout this
thesis) which then allows for the use of Fast Fourier Transforms (FFTs). On
receipt of the transmitted signal the reverse operation is performed, i.e. the
Fourier transform is taken in order to obtain the data: this effectively ‘picks
out’ each component of the (received) vector A in turn. This ‘orthogonality’
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aspect, implying the frequencies necessarily be evenly spaced, is what gives this
form of frequency division multiplexing its name.)

1.5.1 The power of an OFDM signal

It is the power of the signal S(A)(¢) in (1.1) that we are interested in, and
that we would like to bound if at all possible. In signal and communications
theory the instantaneous power of a signal, u(t) say, is defined as |u(t)|? (see for
example [43]), so over a symbol period such as 0 < t < 1/f for which the a; are
constant, we define the instantaneous envelope power of the signal to be

P(A)(t) = [S(A)()]* = S(A)(6)S™ (A)(1). (1.2)

It is also possible to consider the power of the real part of the signal,
|Re[S(A)(#)]|%, but since for any complex entity z, Re[z]? < |z|?> = zz*, this
will always be less than or equal to the envelope power, P(A)(¢), and so any up-
per bound on the envelope power is also an upper bound on the power of the real
signal. The key reason for using the envelope power is that it can be expressed
in terms of the auto-correlation function of A, as is now shown, which can then
be used to give an upper bound on the envelope power. (In some circumstances
it is possible that the maximum power of the real signal is markedly less than
the maximum of the envelope power—see [16] for more detail—but apart from
illustrating the relationship of the signal power to the envelope power in an
example to follow, the signal power is not considered further.)

Substitute (1.1) into (1.2) to obtain

n—1 n—1
P(A)(t) =Y Aje?milfotif)t 3= gre=2millothfs)t
' k=0

7=0
= Z A, A e?mili—k) st
7.k

n—1

_ ZAJA; + ZAjAZeQWi(j—k)fst + ZAjAZeQWi(j—k)fst

7=0 J<k >k
n—ln—1-u

= AA)(0) + ) > AjAs el

u=1 j5=0
1-n n—1+u
+ Z Z AkiuA;:ef?W’iufst
u=—1 k=0

n-l 1-n
= A(A)(0) + 3" A(A)(w)e 2t 1 3" A(A) (w)e 2ot
u=1

u=-—1

= A(A)(O) + i: A(A)(u)e—Zm'ufst + i: A*(A)(u)e%riufst

u=1
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finally giving

n—1
P(A)(t) =n+2Re Y  A(A)(u)e ™l (1.3)

u=1

where the auto-correlation function of A, A(A)(u), has been substituted at the
relevant points. Several properties of the envelope power can now be noted.
Firstly it is independent of the frequency of the first carrier, f;, which has
dropped out of the expression. (In any experimental computation it can thus
be set to an arbitrary value, such as 1.) The expression represents how the
envelope power might vary in practice with increasing ¢, and as A changes. We
are interested in its form within the period 0 < ¢ < 1/f; for any particular
A, which, by definition, remains unchanged in this period. Re-scale the time-
axis by putting t' = f4t, and consider P'(A)(¢') = P(A)(¥'/fs)- In the period
0 <t<1/fs, Ais constant, and so is also constant for 0 < ¢’ < 1, and the
envelope power of P’ in the period 0 < # < 1 will be identical to that of P in
the period 0 < ¢ < 1/f,. This has the effect of removing all considerations of the
transmission frequencies upon the form of the envelope power—it depends solely
on the vector A. Thus we can effectively set fs = 1 and consider the envelope
power in the period 0 < t < 1: all further analysis and computation within this
thesis assumes that this re-scaling has taken place, i.e. that the envelope power
is

n—1
P(A)(t) =n+2Re»  A(A)(w)e ™, (1.4)

u=1
and that the symbol period is 0 <t < 1.

Further, when A is a binary vector (a; € Zg, and so A; € {+1,—1}), the
envelope power is symmetric about £ = % To see this, move the auto-correlation
function outside of the ‘Re’ operator, since it is real in this case:

n—1
Z A(A)(u)e—Qﬂ'iut]

u=1

P(A)(t) =n+2Re

=n+2) A(A)(u)Re[e”>™"]

n—1
=n+2 Z A(A)(u) cos 2mut.

u=1

The functions cos 2wut are even and periodic, of period 1. Any even periodic
function of period T', say f(t), is even about T'/2: take any particular ¢ < T'/2,
then f(t) = f(—t) since f is even, and f(—t) = f(T—t) since f is periodic, and so
f@) = f(T—t). Put t! =T/2—t, then f(T/2—t") = f(T+t'-T/2) = f(T/2+t'),
i.e. f is even about T'/2. This property of the envelope power of binary vectors
is clearly seen in the example plots.

Example 1.3. Consider first some binary examples of length 8. Figure 1.1
shows the signal and envelope power for A = (1,—1,1,—1,1,—1,1,—1): note



Ch1 Introduction and Background 19

that around ¢ = 1/2 the ‘larger than average’ excursions of the signal from
zero produce a large peak in the envelope power. For comparison, plot-
ted to the same scales, Figure 1.2 shows the signal and envelope power for
(1,-1,-1,1,-1,1,1,1): note the much more ‘even’ variations in the signal and
the smaller and flatter envelope power that results. The symmetry of the enve-
lope powers about ¢ = 1/2 is also readily apparent.

Figure 1.3 shows the envelope power for a quaternary example, with vector
A = (1,1,—i,i,—1,4,4). To illustrate how the actual signal power |Re[S(A)(t)]|?
relates to the envelope power, it is shown dotted (calculated with fo = 5). Note
that the envelope power is now no longer symmetric. O

1.5.2 The Peak-to-Mean Envelope Power Ratio (PMEPR)

We now introduce the measure of power of an OFDM signal that is to be used
in this thesis. From (1.4) it is straightforward to see that the average of each of
the terms in the summation, over the period 0 < ¢t < 1, is in fact zero, and so
the mean envelope power of any vector A over this period is just n. The peak
envelope power (PEP) of any vector A is defined to be the supremum of the
instantaneous power over the period, i.e.

sup P(A)(¢).
0<t<1

Then the peak-to-mean envelope power ratio (PMEPR) of vector A is defined as
the ratio PEP/n, i.e.

1
— sup P(A)(1).
N ogit

From (1.4) we have that

n—1
P(A)(t) =n+2Re Y  A(A)(uw)e ™

u=1

<n+2

n—1
Z A(A)(u)e—Qﬂ'iut
u=1
n—1
<n+2) |A(A)(w)e >
u=1
n—1
<n+2Y |AA) () -1
u=1

n—1
<n+2 Z(n —u)
u=1

= n2’
where the last inequality uses the fact that |[A(A)(u)] < n — u (from the com-
ments after Theorem 1.1). So the PEP of any A is at most n2, and the PMEPR,
at most n. This worst-case value of PMEPR is achieved by the ‘all one’ vector:
it was pointed out earlier that it has maximum amplitude of n, so squaring gives
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Figure 1.1: The signal (top) and envelope power for (1,—1,1,—1,1,-1,1,—1)
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Figure 1.2: The signal (top) and envelope power for (1,—1,—1,1,-1,1,1,1)
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Figure 1.3: Envelope power and signal power (dotted) for (1,1, —4,4,—1,4,1%)

its PEP as n?, and its PMEPR as n. As PMEPR is a ratio of powers it is fre-
quently given in decibels, i.e. a PMEPR of R would be expressed as 10log;o R
dB.

(There are a variety of other measures that are in use, and go under such
names as ‘peak-to-average power ratio’, ‘peak factor’ and ‘crest factor’: due to
the fact that it is possible to base such a measure on either the envelope power
or the signal power, some of these are directly equivalent to PMEPR, others not,
so care must be exercised when making a comparison. The crest factor, when
defined on the envelope power, is the square root of PMEPR—the differences
between defining for the signal and the envelope are examined in [16].)

1.5.3 Coding to avoid high peak power

One possible solution to the power control problem for OFDM is then to intro-
duce some form of coding scheme: map the source data into some subset of all
the words that could possibly be used for transmission, and only include those
words in the subset which are known/can be demonstrated to have low peak
power. Many methods have been devised for achieving something along these
lines, including [37, 28, 39, 19, 5, 31, 36, 17, 22, 49, 15, 27, 29, 26, 23, 44, 16, 30]:
some of these eliminate undesirable codewords by exhaustive search, others use
numerical optimization algorithms on the initial phases of the carriers directly,
and still others use some form of block coding. However, Popovic [36], who
generalized the earlier work of Boyd [5], showed that the maximum PMEPR of
a codeword that is a Golay complementary sequence is at most 2:

Theorem 1.4. The PMEPR of any Golay complementary sequence is at most
2.

Proof. Let A and B be a Golay complementary pair, so by definition A(A)(u)+
A(B)(u) = 0 for any u # 0. Then the sum of their instantaneous envelope
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powers, from (1.4), is

n-1 n—1
P(A)(t) + P(B)(t) = 2n + 2Re (Z A(A) (u)e 2™ 43 A(B)(u)e—mut>
u=1 u=1
n—1
= 2n + 2Re Z(A(A)(u) + A(B)(u))e~2mint
u=1

= 2n.

From (1.2) it is seen that the power of any vector is non-negative and real valued,
hence the above sum implies

0 < P(A)(t) < 2n

and similarly for B. Thus the PEP of A is at most 2n, and as PMEPR is
PEP/n, then the PMEPR of A is at most 2. O

The above argument may be extended to a Golay complementary set. Sup-
pose that the N vectors {Ag, A1,...,Ay_1} are such a set. Then the sum of
the powers equivalent to the above gives

N-1
=0

and so
0< P(A)(t) < Nn, 0<i<N-L1

Thus the instantaneous envelope power of an OFDM signal modulated by a
Golay complementary sequence from a set of size N is at most Nn, and the
PMEPR is at most N. We associate the PMEPR of the signal with the particular
vector A concerned, and if vector A derives from some Zg-valued codeword a,
ie. if A; = w% for all 4, then we talk of the PMEPR. of the codeword a. Thus
if a is a Golay complementary sequence from a set of size N, it has a PMEPR
of at most N.

Convention. The PMEPR of a particular vector A may be obtained from a plot
of its envelope power by identifying the maximum power on the plot and dividing
by the mean power, n. To be able to establish more readily that the PMEPR
of A is above or below some value, it is convenient to scale envelope power by
dividing by the mean power, and plotting this instead. Thus the PMEPR can be
read off directly as the maximum value of the plot. This convention is adopted
for all the remaining plots of envelope power in this thesis, and such plots will
still be regarded as being plots of the envelope power.

Example 1.5. The auto-correlation vectors corresponding to the sequences
(1,1,1,-1,1,1,—-1,1) and (1,1,1,—-1,—1,—1,1, —1) are (respectively)

(85 _]-7 07 37 07 ]-a 07 1)
(85 ]-a 03 _37 07 _17 07 _1)

and which clearly sum to zero at the non-zero shifts, and so the pair are a Golay
complementary pair of sequences (in fact they are the first example given in
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Figure 1.4: The envelope powers for complementary pair
(1a17 1a_1a17 1a_1a1) (tOp) and (1a17 1a_1a_1a_1a17 _1)

Golay’s original paper, [18]). By the above, the PMEPRs of both sequences
are thus at most 2, and Figure 1.4 shows that the envelope powers for both
sequences are 2 or below everywhere. O

The utility of the above result with respect to practical OFDM schemes
relies on the existence of a supply of complementary pairs and sets of sequences
of various lengths. Until recently methods for constructing such pairs and sets
have generally been of a recursive nature, and thus have not been seen as very
practical (for example [6, 42, 46, 40]). This has changed however with the recent
publication by Davis & Jedwab of [11], wherein they gave a deterministic method
of constructing Golay complementary sequences of length 2™ over alphabets Zqp,
based on certain cosets of an appropriate generalization of the first-order Reed-
Muller codes. Paterson then generalized some of their results in [32, 33], also
giving a construction for polyphase Golay complementary sets. It is then possible
to devise encoding and decoding schemes for OFDM use which utilize these
complementary sequences (with their desirably low PMEPRs), along with the
error-correcting capabilities of the Reed-Muller codes. A number of such coding
schemes may be found in [11, 32, 33], along with an indication of how the schemes
and constructions sit in relation to other recent, similar work (these not being
a major concern of this thesis). The results from these papers which this thesis
relies on are given in sections to follow: the functions, their properties, and the
definitions of the codes on which the constructions of the sequences are based
are given next; Paterson’s generalization of the Davis & Jedwab construction
for Golay complementary pairs then appears in Section 1.10, followed by his
construction for complementary sets in Section 1.11.
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1.6 Boolean and Generalized Boolean Functions

This section defines Boolean functions and their algebraic normal form repre-
sentation, and their generalization. The definitions of the Reed-Muller codes,
in a section to follow, are given in terms of such functions, and many of the
techniques used and the results obtained in this thesis are based around the al-
gebraic normal form representation of them. Very informally a Boolean function
f is a function whose range is just 0 and 1. There are numerous ways in which
to define such a function, depending on the context in which it is to be used:
f:V = Fa, V an m-dimensional vector space over Fo; f : Z5* — Zy etc. The
definition here follows the tenor of [7], drawing on [25, 2, 41], using the notation
adopted in [32, 33].

Let the m variables zy, ...,z 1 each take the values 0 or 1. The set of all
binary m-tuples is then given by {0,1}"™ = {(z¢,...,Zm-1) : z; € {0,1}}. Let
the binary expansion of the integer i be (ig,i1,..-,%m_1), L.6. & = ;”;Ol i;27.

Then a mapping f from the set of all binary m-tuples to Zg, f : {0,1}™ — Zo,
defined by a polynomial of the form

om_1
f(moy -y m—1) = Z cizlTl Tl ¢ € Zo (1.5)
1=0

is a called a Boolean function, and this particular representation of a Boolean
function is called algebraic normal form.

Each Boolean function can be identified with a length 2™ Zs-valued vector
which is a list of its values at all points of {0,1}™: denote this vector by f =
(fo, f1,---5 fom—1), in which f; = f(ig,41,...,4m-1). There are 22" such vectors
f, and so there are this many Boolean functions in m variables. Since xf = z;,
for all 4, we can obtain all monomials in the z; by forming the 2™ monomials

io i1 i

zx -z, ip=0o0rl, k=0,1,...m—1,

where we write 1 for the constant function zJz?--- 1% . We can thus form 22"
distinct linear combinations (over Zs) of these monomials, but this is precisely
(1.5) in the definition given above. Thus every Boolean function has a unique
representation in this form. The relationship between the values of a Boolean

function f and its algebraic normal form is ([25, Theorem 1, p372] and [38]):

om_1 o '
flzoy.oyom 1) = Z g(@)zQa -z,
=0

with coefficients

g(i) = ij mod 2,
Jci
where jCi means the 1’s in the binary expansion of j are a subset of the 1’s in
the binary expansion of ;.
The order of a monomial acf)ow'f e :v::fjll is Z;":_Ol ij: the non-zero constant
term 1 is defined to have 0 order; linear terms are order 1 and quadratic terms
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are order 2. The order of the Boolean function f is defined to be the maximum
order of its monomial terms having a non-zero coefficient.

We also associate a real-valued vector F = (Fy, F1, ..., Fom_1) with f, where
F; = (-1)fi, i =0,1,...,2™ — 1. Of course we may consider each z; to be the
Boolean function f(zg,...,Zm—1) = z;, and we write its vector of values x;. For
example, x; = (0,0,1,1,0,0,1,1,...,0,0,1,1). The constant 1, when considered
as a Boolean function has vector 1 = (1,1,...,1). Frequently we write f(x),
where it is understood that z = (zg,...,Zm-1).

A generalized Boolean function, f : {0,1}™ — Z,4, is defined in exactly
the same way by (1.5), but where we now allow the ¢; to be from Z,: there
are thus ¢ generalized Boolean functions in m variables; f then becomes a
Zg-valued vector of length 2™, and the coordinates of F are now F; = wli,
i=0,1,...,2™ — 1, w a primitive ¢** root of unity, and so F is now complex-
valued.

We thus work with three entities associated with a generalized Boolean func-
tion f: the algebraic normal form representation, the Z,-valued vector, and the
complex-valued vector. In order to minimize confusion with notation yet to be
defined, we eschew the normal convention of referring to all three as ‘f’ and
endeavour to maintain some level of distinction between them. The Z,-valued
vector will always be f; the complex-valued vector will always be F'; however the
algebraic normal form may be f(zg,...,Zm—1), f(z) and often merely f.

Example 1.6. For ¢ = 2 and m = 4, consider the following function, which is
in algebraic normal form:

fxo,z1, 2, x3) = Tox1 + T1T2 + T1T3 + To + T3.

The associated length 16 vector f of binary values and its real-valued counterpart
F are:

f = (0100011110001011)
F=(+-—+++-———+++—+——).
0

We are frequently interested in the algebraic normal form corresponding to
a vector which is the reverse of the vector for some given function, i.e. given
f(x) and f, what is g(z) such that g =f? Now

g8 =(90,91;---,92m 1) = (fom—1, fom 2, ..., fo),
80 gi = fom_1-4, 1 =0,1,...,2™ — 1. From the above, the value of f(z) at i is

f’i = f(ioﬂila' .. aimfl)

where (ig,%1,...,%m—1) is the binary expansion of 7, i.e. i = Z;-”:_Ol i;27. The
binary expansion of 2™ — 1 is just Z;-”:_Ol 27, i.e. the all one vector (1,1,...,1).
Thus the expansion of 2™ — 1 — 4 is Z;-n;()l 27 — Z;n;()l i;20 = Z;”;OI 29(1 —ij),
or as a vector, (1 —i9,1 —41,...,1 —ipm_1). So

g(‘io, e ,'im—l) =g; = f2’”—1—i = f(l — ‘io, 1-— ‘il, ey 1- im—l),
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from which it is clear that

g(xo,. - yTm—1) = f(l —zo, 1 —z1,...,1 — Zm—1).

Thus given the algebraic normal form for a function, to obtain the algebraic
normal form for the function whose vector is the reverse of the given function,
merely perform the substitution z; - 1 —x;, ¢ = 0,1,...,m — 1. This may
be conveniently written in the abbreviated form g(z) = f(1 —z) (= f(1+ z)
when f is just a Boolean function, since in Zgy, +1 = —1). Since the variables
that a particular function is of are frequently implicitly assumed, i.e f is written
rather than f(z) or f(zo,...,Zm_1), the alternative notation f is often used to
denote the reverse of f (and which of course has commonality with the reversed
vector f).

Example 1.7. To find g(z), the reverse of the function
f(x) = zox1 + T122 + X123 + To + 23
used in Example 1.6, substitute z; — 1+ z; in f(x):
9(z) = f(1+2)
= (1+z0)(1 +z1) + (1 +21)(1 + z2)
+(14+z)Q+x3) +1+z0+ 14 23
=1l4+zg+z1+2021 +14+21 +20+ 2122
+1+z1+ 23+ 7123 + 20 + 73

=1+ z9x1 + z122 + 123 + 21 + T2
It is now straightforward to confirm that

g = (1101000111100010)

Il
=

O

Of course, depending on the order of the function, such a substitution may be
quite complicated. For linear functions such a reversal simply gives the function
negated plus the sum of all the coefficients. For certain quadratic functions, this
reversal is also particularly straightforward: path functions, to be introduced in
the next section, are one such case in point, their reversal to be given in Lemma
1.9 of that section.

1.6.1 Correlations of generalized Boolean functions

One of the primary concerns of this thesis is the properties of the correlation
functions of the complex-valued vectors associated with generalized Boolean
functions. The correlation functions are necessarily actually computed from
the complex-valued vectors; if we speak about the correlation function of the
generalized Boolean function itself, then it is to be implied that we actually
mean that of the vector. Suppose that f and g are two generalized Boolean



Ch1 Introduction and Background 27

functions over Z,, and that their associated complex-valued vectors are F and
G. Theorem 1.1 has already shown the relationships between the correlations of
vectors F and G and their reverses, F and G. There are also some other useful
results pertaining to the addition of constants to one or both of the functions f
and g, and these now follow.

Theorem 1.8. Suppose that f(z) and g(z) are two generalized Boolean func-
tions in m variables over Z4 with associated compler-valued length 2™ vectors F
and G. Let f'(z) = f(z) + ¢ and ¢'(z) = g(z) + ¢ for some arbitrary c € Zg,
with corresponding vectors F' and G'. Let w be a primitive ¢** root of unity.
Then for every integer £ in the range —2™ < £ < 2™ we have

(i) C(F,G)(¥) = C(WwF,G)(f)  =uw'C(F,G)()
(i) C(F,G)(¢) = C(F,w°G)(f)  =w °C(F,G)(t)
(i) C(F',G')(£) = C(wF,wG)(f) =C(F,G)(¢)
() A(F)(0) = A(wF)(0) = A(F)(0).

Proof. (i) The coordinates of F' are
F = whi = w9 = Whiyt = W°F,, i=0,1,...,2" — 1,

and so in fact F/ = w°F, hence the first equality. Put n = 2™ and consider the
case 0 <4 < n:

n—1—¢

C(w°F, G)(¢) = Z WGy
=0

n—1-¢

=’ Y FGiy
i=0
= w’C(F,G)(0),

and similarly for —n < £ < 0, thus giving the second equality.

(ii) Similar to (i), but the constant ¢ is negated due to the conjugation
(w°Giye)* = w™°GY,, in the cross-correlation sum.
(iii) From (i) and (ii):

C(F',G")(¢) = C(w°F,w’G)(¥)
= w’C(F,wG)(¥)
= ww °C(F,G)(¥)
=C(F,G)(¥).

(iv) put G = F in (iii).
U

Note that in the particular case when ¢ = ¢/2, ¢ even (which includes the
only interesting case for binary functions), we have that w® = w?? = —1, so
adding ¢ to the function is equivalent to negating the complex-valued vector,
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and the above results become

(i)  C(=F,G)(¢) = —C(F,G)(¢)
(i)  CF,-G)(¢) = -C(F,G)(¥)
(i7s) C(-F,—G)(¢) =C(F,G)(¥)
(iv) A(=F)(¢) = A(F)(0),

some of which are also usefully employed (sometimes in conjunction with the
results of Theorem 1.1).

1.7 The Graph of a Quadratic Function and Paths

For a generalized Boolean function which is quadratic, i.e. whose algebraic
normal form monomials are all order 2 or less, it is possible to associate a graph
in a simple, natural and very useful way, as is now shown.

First we recall some basic definitions from graph theory. A graph G = (V, E)
consists of a finite non-empty set V' of elements called vertices and a set F of
unordered pairs of distinct elements of V' called edges. Graphs have an intuitive
pictorial representation with points for the vertices, and with a line joining two
points whenever the corresponding pair of vertices is an edge. Vertices u and v
are said to be adjacent if {u,v} is an edge. The degree (or valency) of a vertex v
in the graph is the number of edges of G which contain v. A vertex which is not
joined to any other, i.e. for which the degree is zero, is called an isolated vertex.
If each edge in a graph has some number associated with it, which is conveniently
shown on a pictorial representation of the graph by labelling each edge with the
corresponding number, then the graph is normally called a weighted graph. All
graphs in this thesis are assumed to be of this type and so the distinction from
an unweighted graph is not made. The graph with n vertices and an edge joining
every pair of vertices is called the complete graph on n vertices, and is denoted
by K,,.

So, let @ : {0,1}™ — Z, be the generalized Boolean function defined by

Q(x0s- -y Tm—1) = E 4ijTiTj, Qij € L,
0gi<j<m—1

so that ) is a quadratic form in m variables over Z,; The graph associated
with @, G(Q), is formed from m vertices labelled 0,1,...,m — 1, with edges
between vertices i and j, labelled with g;;, for all g;; # 0 (i.e. for all order two
monomials ¢;;z;x; with non-zero coefficient in the algebraic normal form of @,
there is an edge in G(Q) labelled with the coefficient g;;). Of course, from any
graph G of this type we can construct an equivalent quadratic form, Q. If f is
any quadratic generalized Boolean function, f : {0,1}"* — Zg, the graph G(f)
is defined to be the graph G(Q) where @ is just the quadratic part of f. For the
binary case, ¢ = 2, all edges in the graph would be labelled by 1, so we omit the
labels and take them as read.

This thesis is concerned with functions which have a particular type of graph.
When ¢ is even, a graph is defined to be a path if all its edges are labelled with
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%, and we may start at some vertex and traverse all edges in the graph, from

vertex to vertex, such that each vertex is visited only once. Thus a path on the
m vertices {0,1,...,m — 1}, for m > 2, has exactly 2 vertices of degree 1, which
we call end points, and m — 2 vertices of degree 2. When m = 1, we get a trivial
path which contains a single vertex and no edges. It is seen that the set of all
such paths, for m > 2, corresponds to the set of quadratic forms of the type:

q m—2
5 Z Tr(a)Lr(a+l)s
a=0

where 7 is a permutation of {0,1,...,m — 1}, and where the end points are 7(0)
and 7w(m — 1). It is also convenient to refer to functions of this type as paths,
and to also refer to the variables () and Z(, 1) as end points of the path.
For m = 1, a trivial path corresponds to any linear term, pzo, p € Zg: in this
case both ‘end points’ are equal to the single vertex, i.e. w(0) = 7(m — 1) = 0.
The length of a path is defined to be the number of edges in it, viz m — 1.

A useful property of such path functions is that the algebraic normal form of
their reverse is particularly simple to establish, as given by the following lemma:

Lemma 1.9. Let P, a quadratic generalized Boolean function over Zg4, q even,

be
q k—2
P($05 s 7$m—1) = 5 Z Lir(a)Pir(at1)?
a=0
where the z;;, j = 0,1,...,k —1 are a k-subset of the m variables xg, ..., Tm1,
2<kEm,0<ip <1 < - <ig_1 <m—1, and where 7 is a permutation of
{0,1,...,k — 1}. Then the algebraic normal form of the function whose vector
is the reverse of that of P is
q q
P+ 5(:121'”(0) + xir(k—l)) + (E(k —1) mod q).

Proof. Let the required function be P. Then from the previous section

q k—2
=3 (1 -’Ez,,(a))(l xiﬂ(a+1))
a=0
q k—2
= E (1 :Eiw(a) - ‘/Eiﬂ—(a-}-l) + :Eir(a)$ir(a+1))
a=0
. q k—2 q q k—2
=5k =1) = 5% ~ 4y i) — o Fink- T 3 Y Tivta Finary
a=1 a=0
. . . =
=k =1+ 0%i o) + 5% + g D FintoFinan
a=0
_p_|_g(3;. +x; )+(g(k—1) mod q)
= 9 Fir(o) T Linr—1) 2 )

since the term —Zx;_ (; from index j in the sum, 1 < j < k — 2, combines with
(j—141) from index j —1 to give —qz; ;) = 0, and we have also used that
since ¢ is even, —4 = 4 mod ¢. O

— iz
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1.8 Reed-Muller Codes and their Generalization

The subject matter of this thesis is not concerned with coding theory per se;
however it does involve particular cosets of certain generalizations of Reed-Muller
codes. This section recalls some basic definitions from coding theory and defines
the necessary codes, in terms of generalized Boolean functions described above.

For g > 2, a linear code of length n over Z, is defined to be a subset of Zj
such that the sum of any two codewords is also a codeword. Any such code C can
be specified in terms of a generator matrix, such that C consists of all distinct
linear combinations over Z, of the rows of the matrix: we say that the rows
generate the code. For some fixed, length n vector, a = (ag,a1,...,a,—1), Over
Zg4, the set of the form a + C is called a coset of the code C, and a is called the
coset representative of the coset. The Hamming weight of any vector a, denoted
wty(a), is defined as the number of non-zero a;, i = 0,1,...,n — 1. We are
frequently interested in the Hamming weight of the vector f associated with a
generalized Boolean function f(z), and so may talk of the Hamming weight of
the function, this being taken to mean the the weight of the vector, and we may
also write wty (f).

The following definition generalizes the classical Reed-Muller codes from the
binary to the g-ary case. It is from [32, 33], which generalized the 2"-ary codes
of [11], and which were in turn a generalization of the classical binary codes.

Definition 1.10. For ¢ > 2 and 0 < r < m, RMy(r,m) is defined to be the
linear code over Z, that is generated by the Zg-valued vectors corresponding to
the monomials in zg, ..., z,—1 of degree at most r. Alternatively, RM,(r,m) is
the linear code over Z, whose generator matrix is formally identical to that of
the binary code RM (r,m) but which is interpreted to be over Zj. O

For r > 2, RM,(r,m) is a union of cosets of RM,(1,m); when r = 2, the
coset representatives may be taken to be quadratic forms in m variables.

Example 1.11. The code RMy(2,3) is the linear code over Z, generated by
the vectors corresponding to the monomials of degree at most 2 in the variables
zg,x1 and zo. Its generator matrix, with rows given by the monomials as shown,
is:

(111111117 1

01010101 | =g

00110011 | =3

00001111 | z9

00010001 | zoz1

00000101 | zoz2

100000011 | z122

This matrix is thus as that for the standard binary Reed-Muller code, RM (2, 3),
but since linear combinations of its rows are taken over Z,4, the code contains
codewords such as 3zgzo + 221 = 00220321. O

It should be noted that these codes are distinct from: the Generalized Reed-
Muller code GRM (r,m) [2], which are defined over a field; the quaternary Reed-
Muller code QRM (r, m), which generalizes the quaternary representation of the
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Kerdock code [48]; and the code ZRM,(r, m), a subcode of RM,(r, m) [48], but
also further generalized in [11, 32, 33].

Having defined the weight of a vector, the following simple result which gives
the weights of particular kinds of Boolean functions is very useful:

Lemma 1.12. /25, ‘The randomisation lemma’, p372] Let g(xg, ..., ZTm_2) be
an arbitrary Boolean function in the m — 1 wvariables xg,...,ZTm—o. Then the
function

flxoy. - ym—1) = Tm-1+ g(x0,. .., Tm—2)

takes the values 0 and 1 equally often, i.e. the weight of the vector f is 2™ 1.

Proof. Suppose that g takes the value 0 on 8 occasions and 1 on ¢ occasions
when it is evaluated over all its inputs, thus 6 + ¢ = 2”~'. When z,,,_; = 0, f
will be 0 on 8 occasions and 1 on ¢ occasions. When z,,,_1 = 1, f will be 0 on
¢ occasions and 1 on @ occasions. Thus f is 0 on § + ¢ = 2! occasions and 1
on ¢ + 6 = 2™ occasions. O

In particular this means that all (non-zero) linear Boolean functions are
‘balanced’ or ‘half-weight’, i.e. their vectors have weight 2™~ being half the
length of the vector.

1.9 The Restriction of Generalized Boolean Func-
tions and their Vectors

This section establishes the technique of restriction, as introduced in [32, 33].
This technique is pivotal in obtaining the results in those papers, and also in
this thesis.

Definition 1.13. Let f : {0,1}"* — Z, be a generalized Boolean function in
the m variables xg,...,z,_1, with associated complex-valued vector F. Let
0 < jo < ji-- < Jg1 < m—1be alist of £ > 0 indices, and write
X = Tj,Zj ---Tj,_,- Let ¢ = cgcr---cx—1 be a binary word of length k, and
let the binary expansion of i be (ig,%1,...,%mn 1), i.€. 4 = E;-n:_ol i;2/. Then the
restricted vector F‘ __is a complex-valued vector with components (F‘ ~ is
X=c X=cC
1=20,1,...,2™ — 1, defined by

Pl = wlliosinmim=1) i, —c, 0<a<k—1
x=c/* 0 otherwise.

O

Thus component % of F‘x:c is equal to F; (the i** component of F) when all
the coordinates in the binary expansion of ¢ given by the indices j, are equal
to the digits in ¢, and is zero otherwise. In the special case £k = 0, x and ¢ are
null, and we simply define F‘x:c to be equal to F. We call x = z;,z;, ---zj,_,
the restricting variables, and the j,, @« = 0,1...,k — 1 the restricting indices.
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For any given k restricting variables x = z;,z;, ---xj, ,, let the set of re-
stricting indices be denoted by J, i.e.

J = {jOajla' o ajk—l}-

(This could be written Jx to show the dependence on x, but within any given
context, x is generally fixed, so it is omitted for simplicity’s sake.) If 7 has binary
expansion (ig, %1, .. ,%n—1), then 7 is the index of a non-zero entry in a restricted
vector F‘x:c, where ¢ = ¢yeq - - - cp_q, if

K i, =¢C | = Ja €J

1= Z i;2 where ¢ 7 ¢ J Ja

= ij=0o0r1l j¢.J.

For a particular ¢, denote the set of all such indices as I., which can be written
as

k—1
Ie={i:i=) c2+) i;27, ij=0o0r1}. (1.6)
=0 i

(Again, the strict dependence on x is omitted.) Since there are m — k indices j
not in J, and a choice of 0 or 1 for each associated ij, clearly |I| = 2™, i.e.
there are 2™~% non-zero entries in a restricted vector F‘x:c. Also, for ¢; # cg,
it is clear that I, N I., = &, and so the I, across all possible ¢ for a given x,
partition the set {0,1,...,2™ — 1}, giving the simple consequence that

F=) F|__. (1.7)

Depicting f(ig,..-,%m—1) as f;, the value of f at 4, the definition of the
components in F‘x:c may be written

fi g
w 1 € I
(F| o) = .

0 i¢l.

The values of f; for ¢ in I; can also be obtained by substituting z;, = cq, for
a=0,1,...,k—1, into the algebraic normal form f(z), and simplifying to obtain
a generalized Boolean function in m — k variables, which we denote by f(z) |x:c
(and sometimes just f|x:C). (Note the distinction between the argument z of
f, and x, which denotes the restricting variables.) Evaluating f(z)| __ over
its domain clearly yields the values f; which establish the restricted vector.
This representation is used extensively for manipulating functions and their
restrictions in the sequel, but care must be exercised in distinguishing between

them:

F‘x:c is a length 2™ complex-valued vector, incorporating 2™ — 2m*
zeroes and 2™ % non-zeroes;

2m—k

f (x)‘x:c is a Zg-valued function taking the values which define

F|x:c'

Note we use no concept of restricting vector f, the length 2 vector of values of

f.
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As a functional analogue to (1.7) above, we can combine all the f(z) |x:c to
re-generate the original function f:

:Zf( xX=c H$]aH x]a
c ca=1 ca=0

(Note that an expression so derived will, in general, not be in algebraic normal
form. In fact this representation is very similar to disjunctive normal form—see
[25, p372].)

Example 1.14. Continuing with the function in Example 1.6:

f(x) = zox1 + T129 + T 173 + T + T3,
restrict with x = xgxo over all four possible values of ¢ = ¢yc; to get:
+04+00000-0+00000

)
0-0+00000+0+0000)
0000+0-00000-0-0)
)
)

ToT2=00 ~—

zror2=10

00000-0-00000+0—
Fottto——— -+ ——

F| = (
F| = (
‘:cowQ —o1 =
‘womQ 1 =

= (
Note that summing down the columns recovers the original vector (equation

(1.7)). Substitute zp = ¢p and z2 = ¢; into f(z) for the four values of ¢ to get
the restricted functions:

f($)|w0$2 00 = T1Z3 + T3
f(:v)|w0w2 =Tt tzT1z3+ 1+ 73
f($)|a:ga:2701 =11+ 2123+ 3
f(x)|xox2—11 =z123 + 1 + 25.

It is straightforward to check that

f($)|a;0ac2:00 ’ (1 - .’Bo)(l - x2) + f($)|$0$2:10 : ‘TO(]' - "l"?)
+ f($)|$0$2201 ' (1 - $0)$2 + f(w)‘aroa;z:ll * T2,

after some manipulation, yields the function f(z). O

It is simple to see from the definition of restriction that the conjugate of a
restricted vector is the same as the restriction of the conjugated vector, i.e.
(|, = =P,
X=cC X=c xX=c
Another simple and important consequence of the definition of restriction is
the following. Suppose that the restricted functions f(:c)‘x:c and f’(w)|xzc,
equivalent to the restricted vectors F|x:c and F/ |x:c, for some particular x and
c, are related by

fl(x)‘x:c = f(m)‘x:c +9
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where g is an element of Z,. Then clearly each non-zero entry in F’ e 18 just
w9 times the corresponding entry in F|x:c, i.e. we can write

P, = oF|

xX= x=c’

and hence from Theorem 1.8 we get that
AF'|,_)(0) = AF|,_)(¢) for all £.

It is straightforward to see that all the results of Theorem 1.8 apply to restricted
vectors in a similar fashion, and these results are used repeatedly in the sequel.

1.9.1 Expanding correlations using restricted vectors

The following two useful results show how auto- and cross-correlations of length
2™ vectors may be expanded in terms of their restricted vectors. They are a
slight re-working of Lemmas 7 and 8 of [32, 33|, given here with proofs. Let
J and L be two disjoint subsets of the set {0,1,...,m — 1}, of sizes k and k'
respectively, i.e.

J:{jOajla"'ajk—l} where 0 <
L:{loalla---,lk’—l} where 0<
JNL=2.

s
AN
AN
AN
=
IN N
3 3
|
‘.)—‘

Then we say the restricting variables x = xj,2, - - - xj, , and x' = zyzy, --- 21, |
are also disjoint, and we write xx’ to represent the restricting variables
] ] ] P LRI , pr— I I s ,
Tjy* Tj_1Tlg "~ T1y, - Similarly if ¢ = cpep---cp—1 and € = ey
are two binary words we write cc’ for the binary word ¢o - cg_1¢) - ;-

Lemma 1.15. Let f and g be two generalized Boolean functions in m variables
over Zgq, and let x and x' be disjoint restricting variables as above. Then for all
integers £ and all binary words ¢ and d of length k,

C(F‘XZC’ G‘XZd)(e) - Z Z C(F|xx’:cc’l’ G|xx’:dc’2)(£)'

/ /
€1 C3

Proof. We need only consider £ in the range —2™ < ¢ < 2™, since otherwise
from the definition of cross-correlation both sides of the expression are 0. The
proof is by induction on the number of variables k' in x’. When x’ is null,
then both ¢/ and c, are null and the result is trivial. For the base case of the
induction, when &' = 1 and x’ = z;, is a single variable, we want to show

C(F|x:c’ G|x:d)(€)
= C(F‘xx’:co’
+ C(F|

G| ¢) + C(F| G| oza) (D)

G|

xx’:dO)(
G|

xx'=c0’
£) + C(F| 0).

xx'=cl’ xx’:dO)( xx'=cl’ xx’:dl)(

From equation (1.7) we have

F|x:c = F|xx’:c0 + F|xx’:c1’
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so write the coordinates of the restricted vectors on the right side of this expres-
sion as (F|xx':c0)i = F? and (F|_,__,); = Fy, so that

(Fly_e)i = Fy + FF

and only one of F} and F; can be non-zero, for i = 0,1,...,2™ — 1. Notate for
G similarly. Then for 0 < ¢ < 2™, from the definition of cross-correlation,

n—1-¢
C(F‘X:C’G‘x:d)(e) = Z (F|x: G‘x d z—|—£
=0
n’ilfﬁ
= (Fy + F7) (G + Gity)
=0
nz 1-¢
= Y (FGi, + F G + F Gy + F{ G}y
1=0
= C(F‘xx’:co’ G|xx’ =d0 E) + C1(F|xx’:c0’ G‘xx’ =d1 E)
+ C(F|xx’:c1’ G-|xx’ =do e) + C(F‘xx’:cl’ G|xx’ d1 E)

as desired. The argument for —2" < £ < 0 is similar. Now suppose the result is
true for k' > 1 variables in x’, i.e. that

F‘x c’ :d)(e) = ZZC(F|xx’:cc’l’G|xx’:dc'2)(e)'
€y <

For some new index [ ¢ J, L, we can expand the cross-correlation in the sum on
the right-hand side about the new restricting variable z;, in the same manner
as for the base case, giving

F‘x c’ :d)(g) = ZZC(F‘XX’:CCII’ G‘xx’:dcfz)(e)

J J
¢ C

- Z Z (C(F‘xx’zl:cc’IO’ G|xx’zl:dc'20)(£)+

¢ <
0)+
0)+

C(F|
C‘(F‘xx’
C(F ‘xx’a:l—cc’l 1’ G|xx’ml:dc'21) (6))
- ZZZZC F|xx’zl =cc}a’ ‘xx’wl:dcgb)(e)
c}
- Z Z Z Z C(F|xx’ml:cc’1a’ G‘xx’zl:dcgb) (e)
g a &, b
(on rearranging the sum)

- ZZC xx”—cc”’G‘xx”:dc’z’)(e)’

II II

xx'z=cc}0’ G‘r|xx z;=dch1 )(

z;=cc] |xx’ml dc20)(

where x” = x'z; are the &' + 1 restricting variables z;, -+ -z, By and ¢/ = c'a
and ¢/ = ¢! b are binary words of length k' + 1. Thus if the result is true for £’ it
is true for k¥’ +1, and so by induction it is true for all integers 1 < ¥’ < m—k. O
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The equivalent result for the expansion of an auto-correlation function is a
simple corollary to this:

Corollary 1.16.

A(F‘x:c)(e) = ZA(F|xx’:cc’)(e) + Z C(F|xx’:cc’1’F|xx’:cc’2)(€)'

cj #ch

Proof. In the Lemma, put f = g and ¢ = d (and so F|x:C = G‘x:d etc.). O

1.9.2 The pattern of non-zero entries in a restricted vector

In this section we make some rudimentary observations about the position and
pattern of the non-zero entries within a restricted vector F|x:c: these are then
used in the three immediately following sections to set up some new notation
and terms to be used throughout this thesis. It is emphasized that within this
section we are only concerned about whether a particular entry is non-zero or
not, and not what its value might be if it is non-zero.

The values in a restricted vector F|x:C depend upon the k indices given by
0<jo<j1 <+ <jp—1 <m—1, which correspond to the restricting variables
X = ZjoTj, - Tj, ,, and a binary word of length k, ¢ = coc1 - - - cx—1. Recalling
the set I, equation (1.6), which contains the indices of all the non-zero entries
in the restricted vector, then the index of the first non-zero entry in the vector
is the smallest value in I, denote it by i, say, and is simply given by

k—1
ie =) ca2. (1.8)
a=0

Similarly the position of the last non-zero entry is the largest value in I, denote
it by 4. say, and is given by

k—1
e = Z co 20 + ZQj
a=0 T

k—1
=Y 24y P (2" —1) - (2" —1)
a=0

igJ

k—1 m—1
=214 a2+ Y 21—y
a=0

j¢J 7=0
k—1 .
=2" —1+ ) (cq —1)2%,
a=0

where again from Section 1.9, J is the set of all the restricting indices jq.

Then the ‘span’ of the non-zeroes entries in a restricted vector, i.e. the length
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from the first to the last, is

nx:_. _zc+1
k-1

= —1+Z — 12 =) a2 41
a=0
— 2_:2ja,
a=0

from which it is seen that the length ny depends only on x and not on c.

The pattern of the non-zero entries in F‘x:c is thus defined as a {0,X}-
sequence p of length ny with components p;, ¢ = 0,1,...,nx — 1 given by

pi = 0 if (F|x:c)ic+i =0
' X otherwise,

and we say the pattern is at position i. in the vector. For example, for the
restricted vector

= (0 — 0 + 00000 + 0 + 0000)

Tor2=10
from Example 1.14, the pattern of non-zeroes is X0X00000X0X, at position 1.

For any given restricting variables x, the pattern does not depend on the
choice of constant ¢, as is now shown. Suppose we have two binary words ¢’, ¢
for which (when regarded as their decimal equivalents) ¢’ > ¢. Define

k—1

Cdiff = Z(c’a — Cq) 2

a=0

(note that in general, due to the j, values, this is not the difference between the
decimal equivalents of ¢’ and ¢). Suppose that i € I, and evaluate i’ = i + cgi:

i =i+ cai
—202ﬂa+zz]2ﬂ+z 0)2e
i¢d
S LTS S
a=0 J¢J
i.e. 7' is in I. Thus if there is a non-zero entry at index 7 in F‘ , then there
is a non-zero entry at index ¢ + cgif in F| o 1-e. the indices of the non-zero

entries in the latter vector are just those of the former, shifted by cgig, and
indeed
I =1.+ Cdiff-

Thus the pattern of the non-zeroes in a restricted vector does not depend on c,
which merely determines the position of the pattern within the vector.
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It can also be seen that the pattern of non-zeroes is symmetric. A length
n sequence ag,di,...,an—1 is called symmetric if a; = ap_1—; for all s. Thus
pattern p is symmetric if both terms p; and p,,—1-4, 2 = 0,1,...,nx — 1, are
either 0 or X, i.e. the corresponding components in the vector are either both
zero or both non-zero. Consider the index of a particular non-zero entry in a
restricted vector, i.e. i € I, 1 > i.. Write ¢ as an offset from i.:

k—1

i= co2e +) ;2

a=0 it

=1ic + £, say.

Complement the bits i;, j ¢ J to obtain ':

k-1
= ca2 +Y (1—ij)2]
a=0 i¢7
k—1
= ca2le +3 2 =N iy
a=0 T T
=ic— L.

Clearly 7' is also in I.. Thus if there is a non-zero at i = i. + £, there is also
one at i’ = 4. — £. Write i and 4’ as offsets from the start of the pattern, i.e. by
subtracting ic: i = ic+£ — £, and i’ = ic — € — ic —ic — £ = nyx — 1 —£. Thus if
there is a non-zero entry (an X) at offset £ in the pattern, there is also a non-zero
entry at offset ny — 1 — ¢, and so the pattern of non-zeroes is symmetric.

Example 1.17. Again revisit Example 1.14, with m = 4 and
f(x) = zox1 + 2122 + 2123 + T0 + T3.

With the restricting variables x = zgz2, then J = {0,2}. The pattern of non-
zero entries for all four restricted vectors is seen to be X0X 00000X 0X, which
is clearly symmetric. Taking the particular value ¢ = ¢yc; = 01, from the above
we get that: the length of the pattern is

1
ny =2 =y 200 =2t — (204 2?) =11
a=0
I is given by

1

D cain +> 0520 = (0.2° 4+ 1.2%) + (112 + 432%), i1,i3 = 0,1,
a=0 j¢J

and so I. = {4,6,12,14}; the first non-zero is at

1
ie =Y 2 =020+1.2° =4

a=0
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the last non-zero is
1
fc=2"—14 (ca—1)2" =2" 14 (-1.2° +0.2%) = 14,
a=0

all of which can be verified against the restricted vector itself,
|I0$2:01 = (0000 + 0 — 00000 — 0 — 0).

O

To summarize, the pattern of non-zero entries in a restricted vector F|x:c
depends only on the choice of restricting variables x, the pattern is symmetric,
its length depends only on x, and its position within the vector depends on c.

1.9.3 Truncated restricted vectors

The fact that restricted vectors contain sections of entries which are all zero has
a usable impact on the calculation of their cross-correlation function: it is clear
that the ‘leading’ and ‘trailing’ zeroes in a pair of restricted vectors mean that
their cross-correlation will depend only on the respective patterns of non-zero
entries within the two vectors. This is given shortly as a lemma, but first some
new notation is defined.

Definition 1.18. Let F = (Fy, Fy,...,F, 1) be a complex-valued vector of
length n, and F|x:c be some restriction of it for suitable x and c¢. Then with
1. and 7. as the indices of the first and last non-zero entries in F e 38 above,
write F for (F‘x:c)i’ 1=20,1,...,n — 1, then

FZ-'ZOfor()gi<z'cand§c<z'<n—1,
1.e.

F|_.=(0,...,0,F ,F ,,...,F _,F ,0,...,0)

te—1"" ic

=(0,...,0,Fi., Fly,...,F._,F; ,0,...,0)

X=C

as Fj # 0 and Filc # 0, and so are their respective unrestricted counterparts.
The remaining entries, !, i. < i < i., may or may not be zero, depending
on the restricting variables in x. Then the truncated vector is obtained by
truncating the leading and trailing zeroes of the restricted vector, is of length

Nx = ic — ic + 1, and is denoted by square brackets, [---], i.e.
[F|x:c] = (Eca F’z'lc+1, .- ,F{c_l’ FZC)

Example 1.19. Taking one of the restricted vectors from Example 1.14,

F| = (0 — 0 + 00000 + 0 + 0000),

zora=10

the truncated vector is

(B 5,10] = (0 + 00000 + 0+).
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We thus get the following simple lemma:

Lemma 1.20. Let f and g be two generalized Boolean functions with complez-
valued vectors F and G, and let F|x:c1 and G|X:Cz be corresponding restricted
vectors for some suitable restricting variables x with constants c¢1 and co. With
notation as above, in particular where ic; is the index of the first non-zero entry
in vector (-) ‘x:cj, j =1 or2, and nx the length of the non-zero pattern, then the

cross-correlation of the restricted vectors is given by the shifted cross-correlation
of the truncated vectors:

C(F|x:c1 ’ G‘x:q)(g)

C([F e, ) [Gl oo, D€ — (i, —icy))
= (iCQ_iq)_(nx_l)<€<(iCz_iC1)+(nx_1)
0 otherwise.

In particular, when f =g and ¢ = c9 = ¢,

AF[_ D) —(x—1) <L <mx—1

0 otherwise.

A(F[,_)(0) = {

Proof. Visualize two vectors A and B shifted by £ places with respect to each
other:

— l —)‘AO A1 An,1
B BB, - B,

n

Their cross-correlation is now seen to be formed by taking products vertically
over the overlapping section and summing:

C(Aa B)(é) = AOBE + AIBT—M + et An—l—ZBZ—l'

Consider now the following diagrammatic representation of two restricted vec-
tors:

~ ¢ =0 -~ 0X - X0 0 |

0 0X -+ X0 --- 0]
Here the leading and trailing zeroes are shown as ‘0 - -- 0’, and the pattern
of non-zeroes as ‘X .- X’, where: the index of the first non-zero ‘X’ is ic;,

j = 1 or 2; the index of the last non-zero ‘X’ is Ecj; the length of the pattern
I8 nx = ic; — i¢; + 1, and, by the work in the preceding section, is the same for
j = 1 or 2; and intermediate values may or may not be zero. That the cross-
correlation of the restricted vectors is just determined by the cross-correlation
of the two patterns of non-zeroes is clear.

When the shift produces no overlap between the non-zero patterns:

—~ 2 =[0---0X -~ X0 0 |
0 0X -+ X0---0]

or
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— ¢ =10 0X -~ X0 --- 0]
0 0X --- Xo0 0]

it is clear that C(F‘x:q, G|x:C2)(€) = 0 as all the vertical products are zero.
The first occurs when

l+ig, <,
ie. L+ic, +nx—1<ic,
i.e. L < (iey —tc;) — (Mx — 1),
the second when
C+ic, > e,
ie. L4ic, >ic, +nx—1
ie. > (ic, —ic,) + (nx — 1).

For shifts inside this range, i.e. (ic, —ic;) — (Mx — 1) < £ < (Gey —ic;) + (nx — 1),
which is when the vectors look like

— ¢ =0 0X - X0 0 |

0 0X --- Xo0 0]

and the first diagram shown above, the relative shift between the non-zero pat-
terns in the respective vectors is

g‘l‘iq _iC2 =l— (iC2 _iC1)a

and so the cross-correlation of the whole is given by the cross-correlation of the
patterns, that is

C(F|,_,Gl,_)(O) = CF|,_ ), Gl D~ (e, — ic,)).
Similarly when ¢ is negative

0 0X ... X0 0]« —£ —

0o -~ 0X - X0 0]

the cross-correlation C(F‘ - ,G| _
Ix=c1 X=cC2
the non-zero patterns, which is when

)(£) is zero when there is no overlap in

ie; < —L+ic,
ie. g +nx— 1< —L+ic,
ie. l< (igy, — ;) — (mx — 1),
and when
A+ ey <igy

ie. —l+ic, +nx—1<ic
le. > (ic, —ic;) + (nx — 1),



Ch1 Introduction and Background 42

giving the same conditions as the positive case.

For shifts inside this range, i.e. (ic, —ic,) — (Nx — 1) < £ < (tey —ic;) + (nx — 1),
again the cross-correlation of the whole is given by that of the non-zero patterns,
which are shifted relatively to each other by

'icl - (—E + Z.Cz) ={- (icz - iCl)a
O] .Gl )0 = C(F|,_ LG, D€~ (ies — i),

again as the positive case. This proves the assertion about the cross-correlation.
For the auto-correlation, when f = g and ¢; = ¢ = ¢, then F‘ = G‘ =
X=cC1 X=cCo
F|__., [_:E“x:(:l] = [G|x:c2] = [F‘x:c]. 2.md e, = ficy- Subs_’cltutlng into the Cross-
correlation result, and from the definition of auto-correlation we get the required
result. O

Since the aperiodic auto-correlation function of any vector is, by definition,
zero for any shift whose modulus is greater than or equal to the length of the
vector, we have that

A(F[,_ D) =0 for [£] > nx,
for some restricted vector F‘x:c’ and so we may simply write
A(F|,_)(¢) = A([F|,__])(0) for all £.

There are then two simple consequences of the above lemma: firstly, if two
functions when restricted by the same restricting variables x, but at different
values of ¢, result in the same restricted function, i.e. for functions f and g if

f‘x:cl = g‘x:cz’ C1 7é C2,
then the restricted vectors have the same auto-correlation function, i.e.
AF[,_ )0 = AG[,_)(0) forall L.

This is because as the restricted functions are the same, then the non-zero values
in the restricted vectors are the same, but all those in one are at a shift relative
to those in the other, due to the fact that ¢; # ¢z, and so in turn, ic, # ic,.
The truncated vectors, however, are identical, and thus

A(F|_.)(©) = A(F|__ ()
(G, DO
(Glyee,) ().
Secondly, Theorem 1.24, to be given in Section 1.10 below, gives conditions

for restricted functions f|x:c and g‘x:c to form a Golay complementary pair,
i.e. when

A
A

A(F| )(€)+A(G‘xzc)(€):O, L#0,

X=cC
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thus immediately giving
A(F[,_) () + A(G[,_)(0) = 0 & A([F|,_])() + A(G],_ () =0,

for £ # 0, i.e. F|x:c and G‘x:c are a complementary pair if and only if the
truncated vectors [F|x:c] and [G‘x:c] are a complementary pair. Note also that
since the non-zero entries are ¢! roots of unity and thus have modulus 1, if
there are k restricting variables x, then there are 2™~* non-zero entries and so
this is also the value of the auto-correlation functions for the restricted vectors
at the zero shift: hence the sum of the auto-correlations at the zero shift for two
restricted functions forming a complementary pair is twice this,

AF[_)(0) + A(G],_)(0) = A(F|,_])(0) + A(IG|,__])(0) = 2" *+L,

1.9.4 Reversing restricted functions

In Section 1.6 above it was shown that the reverse of a generalized Boolean
function f(zog,...,Tm—1) is obtained by making the substitution z; — 1 — z;
for i =0,1,...,m — 1, and the resulting function was abbreviated to f(1 — z)
or f. The same idea extends to the reverse of a restricted function, i.e. that
function, which when evaluated over its domain, produces the values of the
original restricted function in reverse order. Let x = z; z;, ---x; , be some k
restricting variables and ¢ be a binary word of length k. The restricted function
f ‘x:C is thus a function in m — k variables, and the reverse of this is obtained
by making the substitutions x; — 1 — z; for just these m — k variables, i.e.
fori =0,1,...,m — 1 and i ¢ {jo,j1,--.,7k—1}- That is, let zx denote those
variables not in x, so the restricted function becomes

Flyce(zx) = f(@)],_es

and then its reverse, also denoted by the | is

E = f‘x:c(l — Ix).

(Note this is not the same as the restriction of the reversed function, which
would be notated as f |x:c, but which is not used anywhere in this thesis.)
Now suppose that g(z) is the function, in m variables, defined by

9(@) = floee TT e T] (0 = 250)-
ca=1 ca=0

Clearly, performing the restriction x = ¢ on g(z) merely recovers the function

f‘x:c’ ie.

g(x)|x:c = f‘x:c'
Thus the restricted vector G |x:c is a vector with non-zero entries in the same po-
sitions as the vector F|x:c, but with the values of the non-zero entries reversed.

Such a vector will be denoted using a , i.e.

G| _=F
X=C

x=c’
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It is emphasized that this is not the same as reversing the restricted vector, i.e.
F‘x:c 7é F‘x:c'

However, if we take the truncation of the vector f‘|x:c, and then reverse it, it is
quite clear that we then get the truncation of the original restricted vector, i.e.

[ﬁ|x:c] = [F|x:c]’

and by reversing both sides we do indeed then get the equality

[F,_c] = [F]

x:c] )

Example 1.21. Continuing on from Example 1.14, with
f(z) = zoz1 + 7122 + T123 + T0 + T3,
and x = zoz2 and ¢ = 10, we get the restricted function
F@)]ygy1o = T1 + 2123 + 1+ 23
which takes the values (1000), and the restricted vector

F| = (0 — 0 + 00000 + 0 + 0000).

ToT2=10

Reversing the restricted function with the substitution z1 — 1 + z; and
zg3 — 14 x3 gives

mz(1+SE1)+(1+SB1)(1—I—$3)—|—1+(1_|_$3)
=l+oi+1+si+aoz3+aizs+1+1+a3

=T173

which is easily confirmed to have vector (0001). Forming the function

9@) = floce 1T 20 T —=50)

ca=1 ca=0
= z12370(1 + 2)

= Tox1T3 + Tox1T2T3,

gives
g = (0000000000010000),

from which we get

zoza—10 = (0 + 0+ 00000 + 0 — 0000)

= F|£E0:E2:10’

where the reversal of the non-zero entries compared to the vector F
above may be observed.

zor2=10
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1.9.5 Compressed restricted vectors

It is occasionally convenient to work with the vector consisting of just the non-
zero entries of some restricted vector, and also the function corresponding to
this vector. Notation for doing this is established in this section.

Suppose F corresponds to a generalized Boolean function f of m variables,
and that we have k restricting variables x, and ¢ = c¢ycy ... cx—1 is a binary
word of length k. After applying the method of restriction, the vector obtained,
F|x:c, consists of a number of zero and non-zero entries, the positions of which
are determined by the restricting variables in x and the value of ¢, and it is the
2™~k non-zero entries we are interested in. From Section 1.9 we have the set .J
of the k restricting indices of the restricting variables in x,

J ={jo,41,---»Jk—1} where 0<jo<j1 <---<jg—1 <m—1,

and (from equation (1.6)) the set I, the indices of the non-zero entries in the
restricted vector, given by

k—1
i=) e+ 02, ij=0orl
a=0 i¢7

Let the set S be the indices of the non-restricting variables, and label these
Say, a=0,1,....m—k—1, with0<sg<s1 < -+ <8Sp_p_1<m—1,ie.

S={0,1,...,m—1}\J
= {50,815--+sSm—k_1}-

Then after restriction, the function f (:1:)|x:C is just a function of the m — k
variables indexed by S, and the indices ¢ of the non-zero entries in F|x:c become

k—1 . m—k—1
i= ca2+ N ig 2%, ig, =0orl, (1.9)
a=0 a=0

2m—k:

and there are such i. We now make the following definitions:

Definition 1.22. The length 2™ % compressed vector, obtained from F|x:c by
removing or ‘compressing’ the zero values out, denoted by

has the components

where

i= 5,29, (1.10)
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where the i are the indices of the non-zero entries in F| ___ given by (1.9), and
where as usual f; is the i*® component of the vector f of all the 2™ values of f.
The compressed function equivalent to the compressed vector, denoted by

F@)|yees
is obtained from f(z) ‘x:c by relabelling the variables to run from 0 to m—k—1,
i.e. by making the transformation z;, = zo, « =0,1,...,m —k — 1. U

The Zvalued vector of values of f(a:) ‘x:c is denoted by ﬂx:c, and is effec-
tively formed by by evaluating f(x) ‘x:c over its domain, and may also be formed
by picking out the components of f in the same manner as the compressed vector,

ie.

(f\‘x:c)’i\ = (f)z = fi’
where again the indices 7 are those from (1.9). As before, we may drop the ‘(z)’
and just write ﬂx:c if the meaning is clear.

Example 1.23. In Example 1.6 we had the function
f(z) = zoz1 + T122 + T123 + TO + T3.
Restricting with x = zgz2 and ¢ = 01 gives

F|, ,._o1 = (0000 +0 — 00000 — 0 — 0)

f(m)|$0;c2:01 =21+ T1x3 + T3

from which the compressed vectors are

~

F|.’1)0.:C2=01 - (+ B __)
f| = (0111)

Tor2=01

and mapping the indices in the restricted function as
1—~0,3—1,
gives the compressed function as
ﬂwou:m = Zo + ZoZ1 + Z1.

O

1.10 A Construction for Golay Complementary Pairs

In this and the following section, those key results from [32, 33] which form the
cornerstone of much of the work in this thesis are presented. In Section 1.5.3
it was shown that Golay complementary sequences have PMEPRs which are at
most 2, and are thus desirable for use in OFDM schemes. The key result of Davis
& Jedwab [11] was to define a simple way to construct such complementary
sequences. The following result (Theorem 9 of [32, 33]) gives the conditions
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under which a pair of restricted vectors form a Golay complementary pair of
sequences, this being a generalization of the main Davis & Jedwab construction
for complementary pairs which follows as a corollary after the theorem.

Throughout the remainder of this thesis, unless stated to the contrary,
q will be even.

Theorem 1.24. Let f be a generalized Boolean function over Zg in the m
variables xg,...,Tym—1, let Xx = xjyxj - x5, _, be some k restricting variables
with0 < jo < j1 <+ < jJp_1 <m—1, and let ¢ = cger - - - cp—1 be a binary word
of length k. Suppose that the restricted function f‘x:c is a quadratic function
and that its graph G(f|x:c) is a path. Then the vector associated with f|x:c
is a Golay complementary sequence, forming a Golay complementary pair with
each of the vectors associated with functions the of the form

x=c’

q
(f+ 5.’Ea+’l")‘

where v € Zq is arbitrary and a is either the single vertex of G(f|x:c) when
k=m — 1, or a vertex of degree 1 in G(f|x:c) when k < m — 1.

Proof. The proof is by induction on k, where we take as an inductive hypothesis
the statement of the theorem. The case k = m — 1 serves as the base case for
the induction. In this case @), the quadratic part of f ‘x:c’ is identically zero,
G(f ‘x:c) has a single vertex labelled a and x omits exactly one variable z,.
From (1.6) it can be seen that the restricted vector F|x:C will have exactly two
non-zero components, at indices ., ¢a2% and ), ca2% +2°. Suppose that
f ‘x:c takes the values fy and fi as z, is 0 and 1, and so the corresponding non-
zero components in the restricted vector are w/0 and w/' respectively. Since z, is
not in x, the non-zero components in the vector associated with (f+Zx,+7) ‘x:c’
where r € Z, is arbitrary, are then wlotT and w1347 = w17 Then the only
non-zero values of the auto-correlation functions of the vectors associated with

f|x:c and (f+%xa+r)‘

X=C
occur at shift ¢ = 2° where the values are wfo(w/)* = w/o=fi and
wfo”(—wf 1) — —wfo—T11 respectively, and so the auto-correlations clearly sum

to zero for all £ # 0, and thus the vectors form a Golay complementary pair.
Now suppose the theorem is true in the case when x contains £k +1 < m — 1
variables and consider the case of k variables. Now the non-zero components of
F|x:c are determined by the values of the quadratic function f ‘x:c inthe m—k
non-restricted variables z;,, ..., z;__,_,, where the graph G(f |x:c) is a path. So
for some permutation 7 of {0,1,...,m —k—1} and some go, ..., gm—k—1,9 € Zg,
we can write

flece=Q+1L
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where

mk2

Q(Tigs - -+ i) E : Lin(a) Lir(a+1)?
a=0
m—k—1

L(wioa et 7',I"im_k 1 - Z Oc'/I"ZW(a)
We claim that the vectors associated with the pair of functions

q
f|x:C and (f + §xiﬂ(m—k—1) +T)|x:c’

where r € Z, is arbitrary, form a Golay complementary pair. The argument
given to support this claim also applies with minor modifications to the pair

q
f|x:c a‘nd (f + ixiﬂ.(o) + T)‘x: r e Zq.

c’

Note that ir (o) and ir(;,—g—1) are the vertices of degree 1 in the graph G(f‘x:c).
Write @ = ir(_g—1) and fo = f + 1xq 41, let £ # 0 be fixed, and consider

A(F| _)(0) + A(Fa|,__)(0), (1.11)

where, as usual, F|x:c and Fa‘x:c are the restricted vectors associated with
f‘x:c and fa|x:c respectively. Write

Fo =F)|

XTq=c0’

F1 = F|xma:c1’
FaO = Fa‘xacaZCO’
Fal = Fa‘xwa:cl’

and expand the sum (1.11), using Corollary 1.16, as

A(Fo)(£) + A(F1)(£) + C(Fo, F1)(£) + C(F1, Fo)(£)+
A(Fa0)(€) + A(Fa1)(€) + C(Fao, Fa1)(¢) + C(Fa1, Fao)(€). (1.12)

By substituting z, = = = 0 into the function f|x:C above we get

Z.7r(m—ls:—1)
f‘xwa:cﬂ - Pl + L, + g (113)
where

q m—k—3

P 3 Z Ti oy Lip (o) when k <m —3

T a=0

0 when k =m — 2
m—k—2

I Z 9aZi, (o) when k< m — 3

goa:zr( ) when kK =m — 2.
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Similarly putting z, = Tip 1) = 1 gives

g

/ !
f|xwa:c1:P +L +2

Ttz T 9+ Gm—k—1-
Now consider the function f' = f + z;_._,_, + gm—k—1. From this definition
and (1.13) it can be seen that

q
f,‘xwa:co = P, + LI + ixiw(m—k—Q) + g + gm*kflﬂ

but this is precisely f|x$ _. above, ie.

Cc

f,|xma:c0 = f|xza:cl'

From its definition above, the graph of f|xza:c0 can be seen to be: either a
non-trivial path in the case k < m — 3, and the vertex labelled i7(;;, £ _2) is an
end point of this path; or a trivial path, in the case when kK = m — 2, consisting
of just the single vertex i;(;_g—2) = ir(0)- There are k + 1 restricting variables
in both |, _  and f'| ., and since they differ by a term with an index
equivalent to a vertex having the necessary properties, and a constant, they
satisfy the inductive hypothesis, and so form a Golay complementary pair, i.e.

A(Fo)(0) + A(Fo)(£) =0, £#0.

Since the restricted functions f |xwa:c1 and f’ |ma:cO have the same form, their
associated vectors have the same non-zero values, only at positions shifted with
respect to one another, and so by the comment after Lemma 1.20 they have the
same auto-correlation function, i.e. for all £,

A(Fy)(0) = A(Fo)(0),

and thus we have that
A(Fo)() + A(F1)(¢) =0 (1.14)

for all £. By substituting z, = 0 in fa| . 1t is seen that

X=

Fop = Fa| w F = wrFOa

— T ‘
xxqa=c0 xxq=c0

and similarly

_ _ ,r+1 T
Fal - Fa|xza:c1 =w 2F|xa;a w Fl'

=cl =

Then from Theorem 1.8 we get
A(Fq0)(€) = A(w"Fo)(£) = A(Fo)(4)

and
A(Fq1)(4) = A(-w"F1)(£) = A(F1)(£),

for all £, and so
A(FaO)(E) + A(Fal)(é) =0, ¢ 7é 0, (115)

too. Similarly for the cross-correlations, we have

C(Fao, Fal)(g) = C(O.)TF(), —w’"Fl)(é) = —C(F(), Fl)(e) (116)
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and
C(Fal,Fao)(E) = C(—wTFl,wTFO)(é) = —C(Fl,Fo)(f), (117)

for all £. Substituting equations (1.14), (1.15), (1.16) and (1.17) into the ex-
panded sum (1.12) shows this to be zero at non-zero shifts, and so the original
sum, (1.11), is also zero, i.e.

A(F[,_)(€) + A(Fa|,_)(£) =0, £#0,

and the functions
q _
f‘x:c and (f + ixiﬂ(m—k—l) + lr)‘x:c (= fa|x:c)

form a Golay complementary pair as claimed. So, if the result is true for k£ + 1
restrictions it is true for k; but it is true for K = m — 1, and hence by induction
the result is true foral k =m —1,m —2,...,1,0. O

Thus after the restriction, the quadratic part of the function f|X:C in the
above theorem is a path function, involving all the unrestricted variables, and
any linear terms may only be in these same variables.

Putting k£ = 0 in the above theorem gives a simple method of constructing
Golay complementary pairs (this is Corollary 11 of [32, 33], itself a generalization
of the main result of [10, 11]):

Corollary 1.25. Let w be a permutation of {0,1,...,m —1}, m > 2, and f a
generalized Boolean function over Zq be defined by

q m—2 m—1
f(an <o a$m—1) = 2 Z Tr(a)Tr(a+1) + Z GaTa;
a=0 a=0
where go, g1, -.,9m—1 € Zg. Then the vectors associated with the functions

fi=f+ %Cwnm) + gdmﬂ(m—l) +9g

fo=[f+ %(1 + ¢+ e)zq(0) + %(d +€)Taim-1) + 9,
where c,d,e € {0,1} and g,9’ € Zg, form a Golay complementary pair, i.e.
A(F1)(0) + A(F2)(£) =0, £#0.
O

Whilst for particular values of ¢ this construction produces sequences that
are already known, it is notable for its simplicity (other constructions are in-
variably recursive) and the connection with Reed-Muller codes (allowing for
encoding schemes incorporating error-correction)—further detail on both these
points may be found in [11, 32, 33]. Since the functions f; and fy share the
same quadratic part, the pair of sequences both belong to the same coset of
RMy(1,m): indeed since there are m!/2 ways to choose the path which consti-
tutes the quadratic part, the corollary identifies a total of (m!/2)g™*! Golay
complementary sequences, and each thus has a PMEPR of at most 2.
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It is not known whether the above corollary accounts for all g-ary Golay
complementary sequences of length 2™. The computational evidence of [11, 32,
33] suggests that this is the case: for the shorter lengths, exhaustive searches
are readily carried out; additionally, for this thesis, an exhaustive search of all
length 64 binary sequences, based on the method of [13] and requiring testing
230 cases, was conducted, but all pairings found corresponded with the above
corollary, thus reinforcing this belief.

1.11 A Construction for Golay Complementary Sets

In this section Theorem 12 of [32, 33] is presented, which derives a bound on the
PMEPR for the words of an arbitrary second order coset of RM,(1,m). This
is achieved by defining a ‘deletion’ operation on the graph associated with the
quadratic form defining the coset, and constructing a complementary set of size
determined by the number of deletion operations: the PMEPRs are then at most
the size of the set.

As before consider a typical second order generalized Boolean function in the
m variables zg, ..., Tm_1,

f=Q+1L

where

Q(zoy.-- Tm-1) = E qijTiTj, Qij € Lq
0<i<j<m—1

is a quadratic form, and

m—1
L(.CC(], e 7',L‘m—1) = Z giz; +9g
1=0

is an affine function. The act of performing a restriction on f has a useful
interpretation in terms of its effect on the graph of f. Consider the function
f‘mj:c, obtained by substituting z; = ¢ in f. In particular, quadratic terms
gijziz; in Q are replaced by linear terms g;;z;c (and linear terms gjz; in L with
gjc), and thus to go from G(f) (= G(Q)) to G(f‘:cj:c)’ the vertex j and all edges
connecting to it must be deleted since the second order terms from which they
are derived cease to exist. Notice that this graph does not depend on the value
of ¢. Thus this defines a vertez deletion operation on the graph G(Q): delete a
particular vertex and all its edges. By extension, for a list of £ restricting indices
0<jo< " <jgg—1 <£m—1, writex=1xj,---xj,_, and ¢ = ¢y ---cg_1, then the
function f |x:C has a quadratic part which is obtained by applying a sequence
of vertex deletion operations on the vertices jo, ji,---,jk—1 of G(Q). The final
graph is independent of the choice of ¢: so, for any ¢, the quadratic part of f |x:c
is completely described by the graph obtained from G(Q) by applying vertex
deletion operations.
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The deletion index d(G) of a graph G is then defined to be the minimum
integer k for which vertex deletion operations applied to k distinct vertices of G
results in a path on m — k vertices.

Before the main result, a lemma is proved. It forms part of the original
proof of Theorem 12 in [32, 33], but is proved separately here as it is called
upon in a number of places. It establishes the following: for some given re-
stricting variables x, suppose that a function is formed by adding £ times some
linear combination of the restricting variables to some other functlon. Take the
cross-correlation between two restricted vectors of this function, but at differ-
ent restricting constants. Then the sum across all linear combinations of such
cross-correlations is zero at all shifts.

Lemma 1.26. Let f(zo,...,Tm—1) be any generalized Boolean function over Z,
and let x = «xjxj ---xj_, be some k restricting wvariables. With
d =dod; - di_1 a length k binary word, form the 2* functions

k—1
f+gZdaxjaEf—l—gd-x
a=0

by writing ZZ;%) dozj, as d-x. Denote the vector associated with the restricted
function (f + %d-x)‘xzc by Fd|x:c’ where ¢ is a binary word of length k. Then
the sum of the cross-correlations

Z C(Fd ‘x:c’ Fd ‘x:c’)(g)’
d

for all £ and for fized ¢ # c', is zero.

Proof. Since the term d - x in (f + 4d - x)| __ involves only the restricting
variables, after restriction it is simply the constant d - ¢, i.e.

q — 4.
(f+§d-x)‘x:c_f|x:c+2d ¢

and thus we have that
Fal| _. wad “F)|

x=c’
where F is the complex-valued vector associated with f. Then using Theorem
1.8 we get, for all £:

ZC(Fd|x:c’Fd|x:c')(€) = Z C(w%d.cF‘x:c’w%d.C’F‘x:cl)(g)
d d
:Zw%d-(c c) ‘x o ‘x:c,)(f)
d
x:c’ Zw 2d-(c—c)
C(F|,_., \x:c,)(g)z(_l)d.(c_d)_

d

= C(F|

By writing the expression d - (¢ — ¢') as Zg;é(ca — cl)dy, and noting that
¢ # ¢, it is seen that this expression is just a non-zero linear Boolean function
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in the d,, and so by Lemma 1.12 it takes the values 0 and 1 equally often as
d = doyd; -+ dy_; runs through all its values, and thus Y 4(—1)d(—¢) = 0.
Therefore

> C(Fal|,_.,Fa|,_.)@) =0 foralle,

d

as was to be shown. O

The following theorem (Theorem 12 of [32, 33]) shows how to construct
complementary sets of size 27! based on an arbitrary second order generalized
Boolean function ): determine those k vertices that are needed to reduce the
graph of @ to a path; pick one of the end points to the path; then with L any
affine function, the set consists of the 25! functions obtained by adding Q + L
to % times all linear combinations of the delete variables and the end point:

Theorem 1.27. Suppose @ : {0,1}™ — Z4 is a quadratic form in variables
Z0, ..., Zm—1 with d(G(Q)) = k. Then the coset Q + RM,(1,m) is a union of
Golay complementary sets of size 2511, Consequently every word of the coset
has PMEPR at most 2k+1,

Proof. Suppose that in the graph G(Q) the deletion of the vertices labelled

70, J15---,Jk—1 results in a graph which is a path. Let a be either a vertex of
degree 1 in this graph, or in the case where k = m — 1, the single vertex of the
graph.

Let L(zg,...,%m—1) be any affine function of zg,...,Zm,m—_1. We claim that the
2k+1 vectors corresponding to the functions

k—1
Q(zoy -y xm-1) + Lz, ..., Tm-1) + g (Z doj, + da:a> dy,d € {0,1}
a=0

form a Golay complementary set. These vectors all lie in the coset of RM,(1,m)
determined by Q.
Let x = zj,zj, ---zj,_, and d = dody---dp_1. Write f = @ + L and put
d-x=Y""0dyx;,. Then the 2¥*! functions are
f+ g(d X+ dzg),
and let the vectors equivalent to these be notated as
Faq-

Then we need to show that

> _A(Fag)() =0, £#0.
d,d

Restrict over the variables in x and expand using Corollary 1.16 to obtain, for
all £,

Y AFa)(O) =YD AFaal,_)(©)
d,d dd c
+ Z Z C(Fdd‘x:cl’Fdd|x:(:2)(e)

d,d c1#ca
= 51 + S5 say.
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From the discussion at the start of this section, the graph of the restricted
function (f + Zd - x)‘x:c is the same as the graph G(Q) after applying the k
vertex deletions, and by hypothesis, this is a path. Moreover, either a is vertex
of degree 1 in this graph, or is the single vertex of the graph when k = m — 1.
So from Theorem 1.24, for every fixed d and ¢, the vectors of the functions
(f+4d-x)| __and (f + £(d-x+4))|,_., ie. for d =0 and 1 respectively,
form a Golay complementary pair, i.e.

3" A(Faal,_)(6) =0, £#0.
d

Thus, on rearranging the sum S, it follows that
Si=3> > AlFad,_)(6) =0, £#0.
[ d d

Now consider the rearranged sum So:

So=>_3" > C(Fad|,_., Fadl,_.) ).

d ci#cz d

The functions corresponding to the vectors Fdd|x:c-’ i = 1 or 2, in the inner
sum may be written as

((f + gdaca) n %d )|

x=c;’

and with fixed d and fixed c1 # co, are seen to satisfy the conditions of Lemma,
1.26, and so the inner sum

Z C(Fdd |x:c1 ’ Fdd‘x:q)(g)
d

is zero for all £ and hence so also is S2. Thus

D A(Fag)(l) =S1+8:=0, £+£0,
d,d

and the set is a complementary set as required. O

So, for an arbitrary second order generalized Boolean function (), the above
theorem gives an upper bound of 271 on the PMEPR of every word of the coset
Q + RM,(1,m): thus we say that the PMEPR of the coset is bounded by 2¢+1.
Note that the PMEPR of individual words may be considerably lower than this
bound, and it may not be tight for any word in the coset.

Computational evidence has suggested that, under certain circumstances,
not all the deletion operations made to determine the deletion index used in
the above theorem may be necessary, leading to Conjecture 1 of [32]. The
conjecture is stated here in Chapter 2 and studied in detail in that chapter, and
also Chapters 3 and 4. In Chapter 3, for functions having a special form, it
is shown that the complementary set of the above theorem is in fact a union
of smaller complementary subsets, and the complementary sets constructed in
Chapter 5 may sometimes identify a subset of the coset whose words all have
PMEPRs less than that given by the theorem.



Chapter 2

Conjecture 1 Proof for the
Single and Double Isolated
Vertex Cases

2.1 Chapter Overview

In [32] it was noticed that when performing the deletion operations for Theorem
1.27 for certain quadratic functions, if a stage was reached where the graph
consisted of a path and other vertices which were disconnected, or ‘isolated’
from it, then the PMEPR of the associated coset was less than that given by
the theorem; this lead to Conjecture 1 of that paper, which suggested that
further deletions to remove the isolated vertices to exactly meet the conditions
of Theorem 1.27 were unnecessary. At the time, only one special case involving
a single isolated vertex could be proved. This chapter examines Conjecture 1 in
detail. Section 2.2 introduces the conjecture. The proof for the single isolated
vertex case in [32] in fact contained a small fallacy: in Section 2.3 below a lemma
concerning cross-correlations is proved, which is then used to provide a correct
proof of this single isolated vertex case. This result is then extended in Section
2.4 to provide a proof of a special case involving at most two isolated vertices
(the double isolated vertex case). In Section 2.5, the lemma of Section 2.3 is
used to construct some simple functions that have the ‘near’ Golay property in
that their out-of-phase auto-correlations sum to zero except at one shift. Some
conclusions are drawn in Section 2.6. Note that Chapters 3 and 4 also contain
material that relates to specific instances connected with Conjecture 1.

2.2 Introduction

Theorem 1.27 places an upper bound on the PMEPR of all codewords in any
general second order coset of RM,(1,m), this being 2¥*! where & is the deletion
index for the second order function concerned. In [32] it was noticed from com-
putational data that the PMEPRs of the cosets of RM2(1,4) for three specific
binary functions were much less than that given by the theorem. The functions
are

Tor1 + x2x3, Toro + T1X3, Tox3 + T1T2,

95
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and have a deletion index of k = 2 since they all consist of 2 disjoint path ‘seg-
ments’, both vertices in one of the segments needing to be deleted to arrive at
the conditions for Theorem 1.27. Thus the theorem gives an upper bound on
the PMEPRSs of 8, whereas in fact computation shows they have PMEPRs of
approximately 3.1. Since applying any single deletion operation on the graphs
of these functions results in a graph consisting of a path and a single isolated
vertex, and that this single deletion appears to give the required bound of 4,
it was conjectured in [32] that the second deletion operation was unnecessary.
Based on this and further computational evidence, the following more general
conjecture was made:

Conjecture 1 Suppose Q : {0,1}™ — Z, is a quadratic form in variables
Z0y .-, Tm—1 Such that applying k > 1 deletion operations to G(Q) removes
all isolated vertices originally in G(Q) and results in a graph that consists of
a path and (possibly) new isolated vertices. Then all the words of the coset
Q + RM,(1,m) have PMEPR at most 2+

The only proof offered for this conjecture in [32] was for a special case where
the graph obtained after applying £ < m — 2 deletion operations consists of
a path and a single isolated vertex, and where an additional constraint was
imposed over and above the conditions of the hypothesis, namely that every
edge in the original graph G(Q) incident with the final isolated vertex must
have weight ¢/2 (henceforth this case is known as the single isolated vertex
case). It is based around the same set used in the proof of Theorem 1.27, and
is sufficient to give the lower value of 4 for the upper bound for the PMEPRs
of the cosets of the three binary functions above. The proof in fact contained
a small fallacy: a correct proof is given in Section 2.3 below, and which also
indicates where the error in the proof in [32] occurred. Section 2.4 then gives a
proof of a special case where k < m — 2 deletions results in a path plus at most
two isolated vertices, in what is called the double isolated verter case (and again
conditions apply to the weights of certain edges in the graph). This latter proof
covers the single isolated vertex case, but uses a different complementary set,
thus offering another proof of the single isolated vertex case.

2.3 Proof of Conjecture 1 for the Single Isolated Ver-
tex Case

In this section the first special case proof of Conjecture 1 is given. This case is
the single isolated vertex case, when the quadratic generalized Boolean function
f, after applying k < m — 2 deletion operations yields a graph which consists of
a path and a single isolated vertex, and with the additional constraint that every
edge in the original graph G(f) incident with the final isolated vertex must have
weight ¢/2.

First a lemma is proved, which is used in both the special case proofs and
later in Section 2.5 to construct functions with a ‘near’ Golay property. The
lemma establishes the following. Suppose that f is a function meeting the con-
ditions for this case, i.e. after some k restrictions (equivalent to the deletion
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operations on the graph of f) the function consists of a path (and linear func-
tions involving variables in the path) and a single linear term, equivalent to the
isolated vertex. Form the cross-correlation function between the two functions
produced by assigning both possible values to the additional restriction on the
isolated variable. Then the sum of this cross-correlation, and the similar one for
the function f plus one of the end points to the path, is zero everywhere except
at one shift—this is because the cross-correlations basically behave as a pair of
auto-correlations of a pair of complementary sequences satisfying Theorem 1.24.

Lemma 2.1. Suppose that f and f', two generalized Boolean function over Z,
in the m wvariables xg,...,Tm_1, are such that for some k < m — 2 restricting
variables X = xj xj -+ T, f‘x:c and f’|x:c are given by
flyce=P+L+gyzy+g
q
fl|x:c =P+ 5xa+L+g7$7+g

where
q m—k—3
p_13 TiioyTipapsy MM~ k>3
a=0
DT;, m—k =2
m—k—2
L= Z GaZiy,
a=0
and the indices ig,%1,---,tm—k—2 and 7y are distinct, ® is a permutation of

{0,1,...,m — k — 2}, and p,9y,9,90 € Zg, & = 0,1,...,m — k — 2 (and in
general the constants g,g and the g, (and hence L) depend on c), and where
T, 18 either of the end points of the path P, i.e. a = iy ) OT ix(m_k—2) (and which
are equal when the path is trivial). Then with F,F' the vectors corresponding to
fy f' respectively, and for fized ¢ and di # do,

C(F| )(€) + C(F'|

I ‘xa:,y:cdz ) (f)

xxy=cd1’ ‘X:E»,:Cdz Xzy=cd1’

B {w(dl—dmmm—k 0= (dy — dy)2"

0 otherwise.

Proof. First note that the graph of f‘x:c contains a path, due to P, and a
single isolated vertex, «: in the non-trivial case, when m — k > 3, the path has
m —k—2 edges; and in the trivial case, m—k = 2, the path is just a single vertex,
and has no edges. In either case the further restriction on z, deletes the isolated
vertex, leaving a function whose graph is just a path. Using Lemma 1.20, in
terms of the truncated vectors, the sum of cross-correlations of the hypothesis
becomes

OF |y ey b [Pl ey D~ (2 — 1))
F O |y i [ e~ (2 — 1)),
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for (ug —u1) — (nx — 1) < £ < (ug —u1) + (nx — 1), where u; is the index of the
first non-zero entry in the vector (')‘xu:cdl’ ug that in (-)Lchd2 and ny the
length of the pattern of non-zeroes in either such vector. For £ outside of this
range, each cross-correlation is zero by the lemma, so the sum is zero too. For
convenience write ¢ = £ — (uz — u1), and thus we equivalently work with the
expression

C([F|

)+ C([F 7, (2.1)

xw»,:cdl]’ [F|x;c7:cd2])( |xw7:cd1]’ [FI ‘xw,,:cdz])(

for —(nx — 1) < ¢ < (nx — 1). Next we note that
f|xa:7:cd2 = f‘xw»y:cdl + (d2 - dl)g’)’,

which means that the non-zero values in the vector F‘xw —cd, A€ wld2—d1)gy
Y=

times those in the vector F|x$7:C 4 only shifted relative to each other, but for

the truncated vectors we do in fact have

= w(dz —d )g')’ [F |

[F‘xw,y:czb] xwa,:cdl]'

Substituting this and the equivalent expression for F/ into (2.1), we have, for
all ¢/,

C([F| )+ C(F |y —ear)s [F g —ea,D(€)
= O[F| . —eq, s @ @D [F,, _ 0 D)
O g 1w F | (£
= W BT (O(F |y o ] [Flyp g D)+
CUF |y —ear s [F' g, —ea, D ()

= w0 (AP g, () + AF |, 0, D),

XT=cdy ] ’ [F | XTy=cd3 ]) (

using Theorem 1.8 to factor the constant from the cross-correlations. The auto-
correlations are of two truncated restricted vectors, for which the corresponding
functions, f‘xzwzcdl and f’|m7:cdl, by the comments at the start of the proof,
have graphs that are paths, and a is either a vertex of degree 1 in the path, or
is the single vertex of the graph (in the trivial case when m — k = 2). Thus the
functions satisfy the conditions of Theorem 1.24 and hence are a Golay comple-
mentary pair. Then from the discussion following Lemma 1.20, the truncated
vectors are also a Golay complementary pair, and as such the auto-correlations
sum to zero everywhere except at the zero shift, #/ = 0, where they equal
gm—(k+1)+1 — 9m—k  Thyg the truncated cross-correlations sum to zero every-
where except for shift # = 0 where the value is w(41~92)912m—k The untruncated
cross-correlations thus sum to zero everywhere except at shift £ — (ue —uq) = 0,
i.e. when £ = uy — u1, with the same non-zero value and where u; and us are



Ch2 Conjecture 1 Special Case Proofs 59

determined by x, z.,,, ¢ and d; or dy respectively. From equation (1.8) these are:

k—1

UL = Z ca2ja +d127
a=0
k—1

Uy = Z Ca2ja + d22’y’

a=0

where ¢ = ¢gcy - - - ¢—1. Hence
Ug — U1 = (d2 — d1)27.

Therefore the cross-correlation sum is only non-zero at shift £ = (dy — d;)27
where the value is w(41=92)972m~k anq the lemma is proved. O

The property of this result that is useful in the following proof is that whilst
the non-zero value of the sum of the correlations depends on ¢ (via g,), the shift
at which it occurs does not.

A proof of Conjecture 1 for the single isolated vertex case is now given—it
is essentially that given in [32], but adapted for notational usage in the current
context, and also correcting the small fallacy contained therein.

Proof of Conjecture 1 for the single isolated vertex case. Let f be
a function satisfying the single isolated vertex case, i.e. the graph obtained
after applying k& < m — 2 deletion operations to the graph of f consists of a
path and a single isolated vertex, and where every edge in the original graph
incident with the final isolated vertex has weight ¢/2. Write f = Q + L where
Q@ is the quadratic part of f, and L is an affine function of zg,...,z,,—1. Let
0<jo<j1<-<jr—1 <m—1be the labels of the vertices deleted from G(f),
and let G be the resulting graph. When k < m — 2, G contains a non-trivial
path and an isolated vertex: we let a be one of the path end points, and label
the isolated vertex jz. When k = m — 2, the graph G contains a trivial path
and the isolated vertex, and so will just consist of two vertices of degree 0: we
label one as a and the other as ji (consistent with the weight requirements on
the edges to ji in the original graph). As in the proof of Theorem 1.27 we claim
that the 28! vectors corresponding to the functions

k—1
f+ g(gda% n dma), d,do € {0,1}

form a Golay complementary set. From this it follows that the PMEPR of the
coset @ + RM,(1,m) is at most 2F+1.

Following the proof of Theorem 1.27, the restricting variables equivalent to the
deletions are x = x,x;, --- Tj,_,, and let d = dod; - - - dy_1, so that we can write

d-x= Zﬁ;ﬁ doj,. Then the 2k+1 functions are
f+3(d-x+daa),

and let the vectors equivalent to these be

Fyq-
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Then we need to show that

> A(Faa)(t) =0, for £#0.
d,d

Restrict over the variables in x and expand using Corollary 1.16 to obtain

Y AFa)®) =YY A(Fadl,_)(®)
d,d dd c
+ Z Z C(Fdd‘x:anddL(:cz)(E)

d,d c1#ca
=51 + S5 say.

Re-arrange sum S, as
$2=3 D > CFadl,_q Fadl, )0
d ci1#cy d

The functions corresponding to the vectors Fdd| 1 = 1 or 2, in the inner

sum may be written as

x=c;’

((F + Gda) + 5d )|

and with fixed d and fixed ¢1 # co, are seen to satisfy the conditions of Lemma
1.26, and so the inner sum

Z C(Fdd |x:c1 ’ Fdd ‘x:@)(g)
d

is zero for all /, and hence so also is So. For S; do a further restriction on the
isolated vertex z;, using Corollary 1.16 to obtain

5SS AT, 0
+ Z Z Z C(Fdd|xmjk =cc)’ Fdd‘xzjk :cc’z) (ﬁ)

dd € ci7ch
= 87 + 55 say.

Consider the re-arranged sum S7:
Sik - Z Z Z Z A(Fdd‘ijk :cc’)(e)'
d ¢ ¢ d

The functions corresponding to the vectors in the sum are

q
(f + E(d X+ d.Ta)) |ijk:CC”
and have graphs which are paths, since the graph G is a path with an isolated
vertex, and the extra restriction removes the isolated vertex, and a is either a
vertex of degree 1 in this graph, or is the single vertex of the graph (in the trivial
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case when k& = m — 2). Thus by Theorem 1.24, for fixed ¢ and ¢/, the pair of
functions over d = 0 and 1, namely

(f+3d- %) e A0 (F + (d-x+2))|

— /
xa:]k—cc

form a Golay complementary pair and hence

Z A(Fdd|x$jk=CC')(£) =0, forf#0,
d

thus in turn giving S} =0, £ # 0.

Now consider the re-arranged sum S5:

S; = Z Z Z C(Fdd|x;cjk:cc’1’Fdd‘ijk:ccg)(g)'

d,d | #c, ¢

It is here that the fallacy in the original proof in [32] creeps in. Since the vertex
Jk is isolated by the deletion operations, in the function f the only second order
terms involving variable z; are those with the variables of the delete indices,
and there may also be a linear term. Thus the only terms in z;, in f are

k—1

Z Yo jeTiaTie T TjuTin

a=0
where g;, € Z, is the coefficient of z;, in L, and the g;,;, are the weights of the
edges between the delete vertices and the isolated vertex, which by assumption
are either 0 or ¢/2, and they are not all zero since j; was not an isolated vertex
in the original graph G(Q). For fixed d and d, by substituting x = ¢, where
€ = coct - -+ Cp—1, and x5, = ¢ into the expression f+2Z(d-x+dx,), and gathering
together those terms involving just the ¢}, we can write the restricted functions
(f + 4(d - x + dz,))| which are equivalent to the vectors Fdd‘xl‘jk*

xzj, =cc’ =cd}
appearing in sum S3, in the following way:

k—1
q ! !
(f + S(dx+ dz,)) ‘ijfcdi =f |xzjk=cc’,- + (Z QjojxCa t gjk)a'
a=0
= f,|ijk:cc§ + gccéa say,
for = 1 or 2, where
k—1
9e = Z TjajrCa T Gjis
a=0

and where the restricted function f’ |x$_ _ o Consists of the path and linear terms
Ik~ 7

in the path variables, and in particular does not involve ¢, (but for emphasis
we leave the restriction notation in). Thus the non-zero values in the vector

/ . . .
Faq _, are w9% times those in the vector F’ _ ;- Using Theorem 1.8
ijk_cci ijk —CCi
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then we get, for all £,
ZC Fdd‘xw — dd|ij —ee,) (D)
= ZC(wycc’lF" ,’wQCCzF" )
x;ujk_ccl ijk—CCz

_ ngc %) (P

|xzcjk—cc1 ‘xzjk:cc’z)(g)'

The argument in [32] effectively attempts to factorize this last expression as
' ! e(ch—ch
C(F ‘xzjk :cc’l’F ‘Xﬂ?jkzcdz)(e) Z wIe(er Cz)’
Cc

and then uses an argument similar to that given below to show that the inner
sum, Y _ w9 (1=%) with ¢} # ¢}, is zero. Tt is the factorization that is incorrect:
in general in f there will be second order terms involving delete variables and
path variables, and the restriction x = ¢ means that these turn into linear terms,
with the ¢, as coefficients, in the function f’ ‘x , ,. Hence the correlations

I]k :cci
C(F’ |x$jk el F/|xzjk —ed, )(£) have a strong dependence on ¢, and so they cannot
be taken through the sum.

This is rectified by using the lemma. For fixed ¢ and d, and by taking d = 0
and 1, the pair of functions

(f+3d-x)|,_, and (f + 2(d - x+30))[ .
may be written as

q q q
f‘x:c + §d - ¢ and f|x:c + Ed -Cc+ El‘a.

By the hypothesis, f ‘x:c consists of a path and an isolated vertex (index ji),
and the pair of functions thus satisfy the conditions of Lemma 2.1, and so for
fixed ¢,d and ¢} # d,

ZCFddlm e Pl _oy)(0) =

wl@1=)9em—k g — (¢ — )20k
0 otherwise,

where, as shown above,
k-1

9c = Z Bjoji Co T i
a=0

is the coefficient of zj, in f|x:c. Note that, crucially, the only shift at which
the sum is non-zero does not depend on ¢, and thus we have that

2.2 CFul ey Faales, )0
chl ¢2)ge gm—k ch say, £ = (ch— c})2’k

0 otherwise.
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It is at this point that the additional constraint over the conditions of the hy-
pothesis of the conjecture comes into play, namely that every edge in the original
graph of G(f) incident with the final isolated vertex must have weight ¢/2. This
means that each g;,;, is 0 or £ and they are not all zero, and thus writing g, as

q
9e =75 Z Ca + Gji
a:qjajk7é0

we see that ) Gjajy 70 C0 is just a non-zero linear Boolean function in the ¢,,
which by Lemma 1.12, will take the values 0 and 1 equally often as c¢ varies.
Thus g. takes the value g;, or g;, + % equally often as ¢ varies, and in turn,

we = w9 MR o _ (y(1=R)95, gk
equally often, thus giving

SN (1(1«“(1,1\,%200,1 , Fdd|mjk:cc,2 )(¢) =0 for all £
[ d

(and note that its the negative terms caused by the % values of the g;,;, that
make the sum zero). Thus reordering the summations in S5 gives S5 = 0 for all
£. Therefore

> A(Faq)(£) =0, for £#0,
d,d

and the set of functions is a Golay complementary set as claimed. O

2.4 Proof of Conjecture 1 for the Double Isolated
Vertex Case

In this section the second special case proof of Conjecture 1 is given. This case
is (nominally) the double isolated vertez case, when the quadratic generalized
Boolean function f, after applying k < m — 2 deletion operations yields a graph
which consists of a path and at most two isolated vertices, and where again
additional constraints must be imposed over the conditions of the hypothesis of
the conjecture: in this case, in the original graph G(f) there must be

(i) a delete vertex with an edge of weight ¢/2 to one of the isolated vertices,
and

(ii) any edges from the remaining delete vertices to the other isolated vertex
must have weight ¢/2.

The proof also covers the single isolated vertex case, but uses a different com-
plementary set to the proof of that case given above. In this proof, for the
single isolated vertex, condition (i) above holds for the single isolated vertex,
and condition (ii) is empty. As condition (i) above is less restrictive than the
conditions for the first proof, this proof is a better result, covering a more gen-
eral case. It follows the same idea as that above, i.e. repeatedly expanding a
sum of auto-correlation functions using Corollary 1.16 and showing that each
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component sum is zero, but due to the extra isolated vertex, it requires that this
be done more times.

Proof of Conjecture 1 for the double isolated vertex case. Let v be the
number of isolated vertices, so v = 1 or 2, and let f be a function satisfying
this case, i.e. the graph obtained after applying & < m — (v + 1) deletion
operations to the graph of f consists of a path and v isolated vertices, and
which meets the weight conditions above (which are detailed further below).
Write f = Q) + L where @ is the quadratic part of f, and L is an affine function
of zg,...,xm-1. Let 0 < jp < 71 < -+ < jg—1 < m — 1 be the indices of the
vertices deleted from G(f), and let G be the resulting graph; let hg,...,h,—1,
where 0 < hy < -+ < hy_1 < m — 1, be the indices of the isolated vertices;
and let 49,%1,..-%m_k_y_1, Where 0 < 239 < 91 < *++ < 4k o1 <M —1 be
the indices of the m — k — v remaining variables (which form the path). Then
for a single isolated vertex, v = 1: when k < m — 3, the graph G contains a
non-trivial path and an isolated vertex, so we take a to be the index of one of
the path end points, and the isolated vertex is labelled hg; when k& = m — 2,
G contains a trivial path and a single isolated vertex, and so just consists of
two vertices of degree zero, and we label one as a and the other as hy. For two
isolated vertices, v = 2: when k < m —4 the graph G contains a non-trivial path
and two isolated vertices, and we take a to be one of the path end points, and
the isolated vertices are labelled hg and hq; when kK = m — 3, G contains a trivial
path and the two isolated vertices, and so just consists of three vertices of degree
0, and we label one as a, and the others as ho and h;. (Note that labelling of the
isolated vertices must be consistent with the weight requirements on the edges
in the original graph.)

In the graph G(f), an edge between vertex i and j has weight ¢;; € Z, if
the term ¢;;z;x; appears in ). To meet the weight conditions on the edges for
this special case, it must be possible to select one of the isolated vertices, h; say,
with b =0 or 1, and one of the delete vertices, j, e € {0,1,...,k —1} for which
Qjh, = q/2 and for v # b, gj,n, = 0 or g¢/2 for « = 0,1,...,k -1, @ # e. The
delete vertex j, is ‘excluded’ from the set that follows. Then we claim that the
2k+1 vectors corresponding to the functions

k—1
f + g (Z dal'ja +dzg + dhbwhb> , where dg, d, dh’b € {0’ 1}’

a=0
ate

form a Golay complementary set: it then follows that all words of the coset
Q + RM,(1,m) have PMEPR at most 2F*1.

Using similar notation to that used previously, let

X =Zjoljs """ Tje_1Ljeqs """ Tjp_1

d=dd - de_1desr---di1,

i.e. the index of the excluded delete vertex is not included, then put

k-1
d-x= Z doxj, -
a=0

a;_ée
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The 21 functions are then

f+5 (d x +dzq + dp,2n,), (2.2)
and let the vectors equivalent to these be
Fada,, -
Thus it is required to show that

> A(Fada,,)(£) =0, for £ # 0.
d,d,dhb

Restrict over the variables in x and use Corollary 1.16 to obtain:

Z A(Fqqq,, )(l) = Z ZA(Fdddhb‘x:c)(e)

d,d,dy, ddd, ¢
b b

+ Z Z C(Fdddhb ‘x:cl ’ Fdddhb |X=C2)(e)

d,d,dhb c1#£c2

=51 + S5 say.

Re-arrange sum S as

52 - Z Z Z C(Fdddhb ‘x:cl’Fdddhb |x:Cz)(£)'

d,dhb c1#£cy d

The functions corresponding to the vectors Fdddhb ‘ 1 =1 or 2, in the inner

sum may be written as

((f +35 (d-'lf'a + dhbwhb)) + %d : X) |x:c,—’

and with fixed d,dp, and ¢; # co, are seen to satisfy the conditions of Lemma
1.26, and so the inner inner sum

Z C(Faddy, |x:c1 s Faday, ‘x:q)(e)
d

is zero for all £, and hence so also is S3. For S1, do a further restriction on the
isolated vertex hy, i.e. restrict on zp,. As before using Corollary 1.16:

=2 > Z AF addy, |, —cer)(?)

d,d,dp, ©

+ Z Z Z C( Fdddhb S—— Fdddhb|xmhb=c0'2)(e)

d,d,dpn, € cj#c

=S + 55 say.

Consider the re-arranged sum S5 first:

Sy = Z Z Z Z o Fdddhb XTp, =CC} Fdddhb |xwhb:cc'2)(e)'

c cj#ch dny
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In the restricted functions equivalent to the restricted vectors in this sum, sep-
arate out the term involving dj, to get

(f + %(d x4+ dzg + dhb$hb))|

xzhb:ccg
(f+ (d-x + dz,) \wa ot dh,, .
for i = 1 or 2. Thus for fixed d,d,c and ¢, the values in the vector
Fdddhb — are just w29 times those in vector Fdd‘xz — the vector

associated with the function (f + £(d-x+dz,))|,,
dence on dp,. Then, using Theorem 1.8, we get for all /,

el Wthh has no depen-
et

ZC Faddy, ‘xzh ot Fdddy, |xwhb200’2)(€)

dp,,
- Z C dethIFdd|xwh =cc} ’wzdhbcded|xwh —ccz)(e)
dhb
=Y Wi DO, s Faalg, —ag)?)
dp,,
4 r_
= C( Fdd‘xmh —cd, dd|xzh —cd, )(£) Zw2dhb(cl ch)
dhb
(A _ o
=C( Fdd‘mh =cd) dd|xzh _ccz)(g)(wo +wia 02))

a
= C(Faalyy, —cor Faaly, —c) @O0 +w™2)

= dd\xwh e, dd|x$h _ee,) (1 1)

using the fact that since the only values for ¢| and ¢, are 0 and 1, and they are
not equal, ¢} — ¢5 = £1, and so in either case w3(@=¢) = u*5 = _1. Thus the
sum S5 is zero for all /.

Apply Corollary 1.16 again and expand ST by restricting on the last remain-
ing delete variable, x;,:

Z Z Z E A Fdddhb XThy Tje —ccd c”)(e)

dddp, ¢ o

+ Z ZZ Z C Fdddhb xwhbw]e—cc’c”’Fdddhb xwhbxje:cc’cg)(g)

dddhb c ;éc
= S7* 4+ S5 say.

Consider the re-arranged sum S5*:

= Z Z Z ZC Fdddhb |x:ch zj,=ccc ”’Fdddhb XThy, x]e_cc’c’z’)(e)'

d,d,dp, © cf#cy ¢

Similar to above, for the restricted function associated with the vector in the
sum, for any d,d,dp,,c,c] and ¢/, gather together all the terms that involve ¢/,
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i.e. those that emanate from the restriction on the isolated vertex hy: this may
only be connected to the vertices which are deleted in the graph G(f), so @ has
terms g, n, T, Th,, say, for all o, and let gp, be the coefficient of zp, in L, thus
giving

(f+ =(d- x—}—d:va—l-dhba:hb)”

. — i
XTh, Tjo =cc'c]

=/ ‘xzhbmj —ccer T Zq]ahbcac + Qo €] + gn, ¢ + dhb
ate

! rn
= f ‘Xl‘hbfl‘jezcclcgl + ge + 9jehy € Ci 5
for 4 = 1 or 2, where

E : q
gc = qjahbcacl + ghbcl + idhbcl7
ate

» consists of the path and linear terms in the path

and where f’|x$ S
hyLje = i

variables, and includes the Z(d - ¢ + dz,) term, but specifically does not in-

. ! I_I
volve ¢. Thus the values of the vector Faqq, ‘ . are just w9 Tlen € ¢
b 1XThy T =cC' ¢}

times those in the vector F’ ‘ ., the vector associated with the function

XThy Tje =cc'c]

, »n- Thus, using Theorem 1.8, for all ¢,

f |xwhszE =cd'c]

Z C(Faddy, ‘xwhbwh—cc’ > Faddy, |xwhbwje=06’0’2’)(e)

CI

= Z C(wgcf+qjehb0’0’1'F" , ”’wgc’+qjehbclcl2'Fl|

XTp, Tj, =cc'c XThy Tj :cc’c’z’)(e)

_§ : Qjehy € (] —cl)) I‘ I‘
we C(F XThy Tje —cc’c’l”F xzhsze:cc’cg)(e)

= C ‘ ‘ E wiehy€ (ef —<5)
XThy, Tje =cc'cf’ xwhbz]e_cc’c
’ ! 0 1(c-d}
= 2\~1 2
C(F ‘xwhbwje =cdc? ‘xzhsze :cc’c’Z’) (E) (UJ +w )
= 0’

since, by assumption, gj,, is ¢/2, and arguing as before, ¢/ — ¢§ is always +1
(this is the extra weight condition (i) that was imposed). Thus the sum S5* is
zero for all 4.

At this point, if v = 1 and we have just a single isolated vertex hy, from the
comments at the start of the proof, for any d,dp,,c and ¢”, we note that the
function

(f+3 (d X + dp,Th,))|

J— ! Al
XTh, Tje =CC'C

has a graph which is a path, since it was originally a path (either trivial or
non-trivial) with an isolated vertex, and the restriction on zp, has deleted that
isolated vertex. The vertex labelled a is either the single vertex of the graph, or
a vertex of degree 1 in the path, and in addition, any linear terms only involve



Ch2 Conjecture 1 Special Case Proofs 68

the variables in the path. Therefore the conditions of Theorem 1.24 are met,
and the functions

(f+3 (d x + dp,Th,))|

. = ! 17
XTh, Tje =CC'C

and
(f + = (d X+ x4 + dhbiL‘hb

| . = ! 17
XTpy Tje=cc'c

form a Golay complementary pair, so

> A(Fadd,, a5, zecrer) () = 0, for ££0,
d

and thus by reordering the summations in S}*, it is also zero when £ # 0. Thus
the original sum,

> A(Fada,,)(£) =0, for £#0,
d,d,dp,

as required, and the set of 28! functions specified forms a complementary set,
thus yielding another proof of Conjecture 1 for the special case of the single
isolated vertex.

However for the double isolated vertex case, i.e. v = 2, we need to make
a further expansion using Corollary 1.16, by restricting on the second isolated
vertex, Tp,:

= Z Z Z Z Z A Fdddhb |xzhba:]e Thy _cc’c”c”’)(g)

d,d dhb c o ! oM
D DD ID I DR DIKelt 2TV N—"r
d d dhb C I II /II# Ui
Fdddhb ‘xa:hszea:h,y :cc’c”c’z”)(g)
S*** —f—S***

S— is obtained
by performing all the deletion operations on f, and so by hypothesis, has a
graph which is a path (either trivial or non-trivial) plus two isolated vertices.

The extra restriction on the isolated vertex hy, gives the function f ‘xxh
b

Again consider the second sum, S5**, first. The function f |

Tj.=cc'c’’
which thus has a graph which is a path plus a single isolated vertex. Thus writing
the functions

(f+= (d x +dz, + dhbmhb))|

PRp— el
XTpy Tjo=cc'C

with d =0 and 1 as

l\DIQ

f|xmhbz]~e:cc’c (d c+ dhb )
and q
o 5(d ¢+ +dp, )

Fleay o —ce
XTh, Tje =CC
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gives a pair of functions satisfying the conditions of Lemma 2.1, and so for fixed
d,dp,,c,d, " and " # ¢

Z C(Faddy, ‘xwhbwje:vh —cceren Faddy, ‘X:Ehbxjexh'y —edell )(©)

w(cm u/)gch k=1 p— ( Mno_ Cllll)2h,7
0 otherwise,

where g, is derived from the coefficient of z;,, in f, as shown below. Since the
only shift at which the sum is non-zero does not depend on ¢, we have that

g E C(Fadd,, ‘xzhsze —— Fada,, ‘xmhszeg% R )(£)

c d
"n_ m
E W(et’ —e3")gegm—k—1 _ E we say, £=(cy —c]"2M

0 otherwise.
To derive g., as hy is an isolated vertex, it can only make second order terms in
f with the delete variables, and there may also be a linear term:
k-1
Z QjahyTijoThy T QjehyTjeThy + Ghy Th., -
a=0
a#e
Substituting the appropriate restricting constants gives
k—1
ge = Z QjuhyCa + Giehy " + Gh-
a=0
ate
By assumption each gj,p., is 0 or ¢/2 and they are not all zero since h, is not
isolated in the original graph G(f), and thus writing g. as

q
9= 73 > ca+in,c +gn,
aate
Qjo hy 70

> e

aafte
Tjohy 70

we see that

is just a non-zero linear Boolean function in the c,, which by Lemma 1.12,
will take the values 0 and 1 equally often as ¢ varies. Thus g. takes the value
Qjeh, €" + Ghy OF @jon, " + g, + /2 equally often as c varies, and in turn,

w — w(c'”—cg')(qjeh,yc”+ghb)2m—k—1 or — w(cllu_cg' (qjeh'ycll+ghb)2m_k_1
equally often, thus giving, for all /,

Z Z C(Fadd,, ‘xzhbwjezh’yzcclcuclluaFdddhb xzhbwjezhwzcc,cucgl)(é) =0,
c d
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as the shift at which the non-zero values w, occur is independent of ¢. It is at
this point that reason for imposition of the extra weight condition (ii) occurs:
the coefficients g;, 5., need to be either 0 or ¢/2 in order for the above argument

to work. Thus reordering the summations in §5** gives S5** = 0 for all /.

Finally to sum S7**. Further to the discussion for S3** above, the
extra restriction on the other isolated vertex h, means that the function
f ‘xzhbmjezhyzcc,c,,c,,, has a graph which is a path (which may be either trivial
or non-trivial), and which involves only linear terms in the variables in the path.
Thus for every fixed d, dp,,c,c’,¢” and ¢” writing the functions

q
(f+ E(d x +dz, + dp,Tp,

)|xwhszewh,y:cc’c”c”’
with d =0 and 1 as

7 /
f‘xzhbwjewh.y:CC’C"c’” + §(d -Cc+ dth)
and q
wtgld-etzat+ dp,c))

‘ . p— !l
XTpy Tje Thy=cC'c'C

gives a pair of functions satisfying Theorem 1.24, i.e. they form a Golay com-
plementary pair and thus

Z A(Fdddhb |xwhb$jezh7:CC’C”C’”)(E) = O, for ¢ §é 0.
d

Thus by reordering the summations within it, the sum S7** is zero for ¢ # 0.

Then the original sum,

> A(Fada,,)(€) =0, for £#£0,
d,d,dp,

as required, and the set of 28! functions specified forms a complementary set,
thus completing the proof for the double isolated vertex special case. O

Example 2.2. As an example, take the following function f in the 7 variables
To,T1,-..,Tg OVEr Zg:

f =3(zoz1 + z122) + 22376 + 3375 + 3T4T6 + DT4T5
+ zore + 22126 + 3T2T6 + 2x526 + dToT5 + DxL1T5 + dToTS.

The graph of f is shown in Figure 2.1. Choose vertices 5 and 6 to be the delete
vertices: this then leaves vertices 3 and 4 isolated, and the path 3(zoz1 + z122).
Choose 3 to be the isolated vertex in the set (= hp) and 5 to be the delete vertex
excluded from the set (= j), so that the other isolated vertex is 4 (=h.), and
the remaining delete vertex is 6. Then the coefficients of z3zs (selected isolate
to excluded delete) and z4x6 (the remaining delete to the other isolate) are both
3, and so the function satisfies the hypothesis. Choose end point z2 of the path,
then the complementary set is

f + 3(azg + bxo + cx3), a,b,c€{0,1},



Ch2 Conjecture 1 Special Case Proofs 71

Figure 2.1: The graph for Example 2.2

for all combinations of a, b and ¢, and direct computation confirms that the sum
across the functions of the out of phase auto-correlation functions does indeed
yield zero—samples of the auto-correlations at a few shifts are:

L= 46 47 48 49

f: 3 , 2(— 5+ 5iv3), 0, Z(-13-5iV3)
f+3zo: —1+6iv3, (- 9+ 9iv3), 0, 1(-15-3iv3)
f+3z6: — V3, i(-1-17iVv3), 0, I( 7+3iV3)
f+3z3: 6+3iv3, 3(-11+11iv3), 0, (- 5— iV3)
[+ 3(z2 + x6) : —2-5iv3, 3( 15— 7iv/3), 0, i( 21+5iv3)
f+3(z2+x3) : —4+3iv3, 3(— 3+ 3iv3), 0, +(-23-TiV3)
[+ 3(z6 + x3) : -9-2iv3, 3( 17— 9v3), 0, i( 11+3iv3)
f43(m+mg+ms):  T—4iv3, (- 3— 5iv3), 0, 3( 17+5iV3)

Adding down the columns is seen to give zero. Figure 2.2 shows the envelope
power of a randomly chosen word in the coset f + RMg(1,7):

f+3zo + 4z + bzo + 5x4 + 3z5 + 46,

from which it can be seen that the PMEPR is less than 22t! = 8, as predicted
by the above proof. O

2.5 Pairs of Functions Exhibiting a Near Golay Prop-
erty

Using Lemma 2.1 from Section 2.3 above it is possible to construct pairs of
functions whose out of phase auto-correlation functions sum to zero everywhere
except for one shift. Such a pair is termed a near Golay complementary pair.
A pair of pairs is then easily constructed whose auto-correlation sums have
opposite values at this particular shift, thus giving a complementary quadruple
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Figure 2.2: Envelope power for Example 2.2

set (this can be shown by Theorem 1.27, but that proof doesn’t reveal the near
Golay property). (Note that ‘except at one shift’ is meant within the normal
convention of only regarding auto-correlation functions for non-negative shifts.
When viewed across all shifts, the sum of the auto-correlations of such a near
Golay pair will in fact be non-zero at three shifts: at the zero, ‘in phase’, shift,
as for a normal Golay pair; at one positive shift; and at minus this shift, where
the value will be the conjugate of the value at the positive shift, since the values
of an auto-correlation function at negative shifts are just the conjugates of the
values at the corresponding positive shift, from Theorem 1.1.)

The basic idea is to take a function f in m variables, whose graph is a path
on m — 1 vertices plus an isolated vertex. Pairing this with the function f plus
one of the path end points then gives the near Golay pairing. A second pair to
which ¢/2 times the isolated variable has been added to both functions is also
near Golay, but this pair’s non-zero entry in the auto-correlation sum is of the
opposite sign to the first pair, and hence together all four form a complementary
set. This is given by the following theorem, where the full range of shifts of the
auto-correlations are considered for clarity.

Theorem 2.3. Let f and f’, two generalized Boolean functions over Zg in the
m > 3 variables xg, ..., x,—1, be given by

f=P+L+g

F'=P+ 3.+ L+g

where

-3

3

_49 . .
P = 9 Lir(a)Pir(a+1)
a=0
m—1
L = gamaa
a=0

and 0 < ip < i1 < -+ <im_g < m — 1, 7 is a permutation of {0,1,...,m — 2},
and g,9a € Zg,  =0,1,...,m—1, and where a is either iy ) 0T ix(m_2), S0 that
Zq 15 one of the end points of path P. Let {0,1,...,m—1}\{ig,...,im—2} = {7}
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Then the functions f and f' have auto-correlations that sum as

2m+l £=0
w™Ih2m =27
AF)(0) + A(F')(¢) =
B +AE®)N =3 T
0 otherwise,

that is the pair are a near Golay complementary pair.
In addition, the set of the four functions given by

q
f+ E(dxa +dyz,), d,d,€{0,1}

form a complementary set.

Proof. Perform a restriction on x, and expand the sum of the auto-correlations
using Corollary 1.16 to get

A(F)(8) + A(F')(£)
=Y (A, _ )0+ AF|, _)(©)

+ Z (C(F|z7:c1’F|z7:cz)(£) + C(F,‘:c.y:cl’FI|$7202)(£))'

c1#c2

The graph of f ‘x _. 18 a path (which is non-trivial by the m > 3 condition in
=
the hypothesis), the restriction on z, having deleted the isolated vertex, and a
is the index of one of the end points of the path. Thus for fixed ¢, the pair of
functions q
f|:c»,:c and (f+§x“)‘w»,:c

form a Golay complementary pair by Theorem 1.24, and so

AR, _ )0 +AF|, _)(0)

Ty=C
is zero except at £ = 0, where, by the comments after Lemma 1.20, each pair
contributes 2™ 1+1 = 2™ to the overall sum, giving a total of 2t! at the zero
shift as usual.
The functions

foand f'=f+ 1z,
are also seen to fit the conditions of Lemma, 2.1, for the case of k¥ = 0 restrictions,
thus, for ¢; # ¢

C(F| F|w7202)(£) + C(F

!
‘ac’y:cl’ |ac7:02)( )

{w(6102)972m L= (co—c1)27

Ty=cC1’

0 otherwise.

Thus the only non-zero contributions made by the cross-correlation sums to the
overall sum are w92™ at £ = —2Y when ¢; = 1,¢9 = 0, and w™92™ at £ = 27
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when ¢; = 0,c3 = 1. Since the only non-zero values in either the auto- or cross-
correlation components of the overall sum occur at distinct shifts ¢ as shown,
the first part of the theorem is proved.

To show that the functions

f+3(dea+dyey), dydy € {0,1}
form a complementary set, when d, = 0 notate as f and f’ above, and when
d, =1 write
q q
fr=f+ 2% and f; =f+ 5(:6,1 + z,),

noting that in the latter cases the overall coefficient on 2., is now g, + . Then
from the first part of the theorem we get

2m+l £=0

, Jw2m =27

AF)() + AF) () = WA f— o
0 otherwise
and
2m+1 /=0
—(9r+3)9gm — _(y;=9v9m  p =97
! _ w w
A(F,)(€) + A(FV)(E) T ) w@rtom — _ 9v9m L= =27

0 otherwise,

from which we clearly get
A(F)(0) + A(F')(0) + A(F,) () + A(F))(€) =0, £#0,

which is precisely the condition that the four functions form a complementary
set. U

Example 2.4. As a simple example consider the Boolean function in the four
variables xg, ..., x3
[ = zor3 + 7173,

so the path is just f and we use end point z1, v = 2 is the isolated vertex, and
gy = 0. Then the auto-correlation functions of

£, f=f+m, fy=f+w and [, =[+a+

are:
A(F)(¢) = (16,7,0,5,8,3,0,1,0,—-1,0,1,0,-1,0,1)
A(F')(¢) = (16,-7,0,-5,8,-3,0,—1,0,1,0,—1,0,1,0, —1)
A(F)(¢) + A(F')(¢) = (32,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0)
A(F,)(¢) = (16,1,0,3,-8,1,0,-5,0,-3,0,3,0,1,0,—1)
A(ny)(é) = (16,-1,0,-3,-8,-1,0,5,0,3,0,-3,0,—1,0,1)
A(F,)(0) + A(ny)(f) = (32,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0),
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illustrating the non-zero entries £2™ = 424 = 416 at shifts =27 =22 =4 in
the pair of summed auto-correlations, so that adding this pair clearly gives the
auto-correlation sum of a complementary set. O

2.6 Conclusions

In this chapter it has been shown that Conjecture 1 (of [32]) is true in some
special cases, i.e. when k > 1 deletions in the graph of f results in a graph which
is a path and either one or two isolated vertices, and where special constraints on
the weights of edges in the original graph of f apply, then the further deletions of
the isolated vertices as per Theorem 1.27 are unnecessary: a complementary set
of 28+ functions may be constructed, and all words in the coset f + RMy(1,m)
thus have PMEPR at most 2¥*1. In Chapter 3 specific examples of functions
are constructed, which satisfy the hypothesis of the conjecture and which have
3 or more isolated vertices following the deletions, the PMEPRs for which also
meet the conjectured bound. However, in Chapter 4 several families of (binary)
functions are exhibited, which satisfy the hypothesis and have 3 or more isolated
vertices following the deletions, and within the cosets of which exist words having
PMEPRs greater than 28!, and thus the conjecture cannot be true in general.

In the last section pairs of simple functions have been constructed that have
the near Golay property in that their out of phase auto-correlations sum to zero
except at one shift. Quadruple complementary sets are then easily constructed
from a pair of such pairs.



Chapter 3

Generalized Boolean Functions
with the same Aperiodic
Auto-correlation Function

3.1 Chapter Overview

This chapter looks at generalized Boolean functions which share the same auto-
correlation function. The introduction shows some simple ways in which this
happens, and gives a necessary condition for this to be so for binary functions.
In Section 3.3 a construction is given for pairs of generalized Boolean functions
which share the same aperiodic auto-correlation function, and a useful corollary
for functions which contain a path segment is obtained. Repeated application of
the corollary to a quadratic function consisting solely of path segments culmi-
nates in a refinement of Theorem 1.27 in Section 3.4. This result is then applied
in Section 3.5 to construct functions meeting the bound of Conjecture 1 and
satisfying the hypothesis for an arbitrary number of isolated vertices following
the deletions. Some conclusions are drawn in the last section, Section 3.6.

3.2 Introduction

The study of Golay complementary pairs concerns, by definition, sequences
whose auto-correlation functions sum to zero, viz

A(A)(0) + AB)(£) =0, £#0.

In this chapter sequences are studied which share the same auto-correlation
function, i.e. for which the difference of the auto-correlation functions is zero:

A(A)(£) — A(B)(£) = 0 for all £.

In the introductory chapter, two of the theorems listing the properties of cor-
relation functions have already given two simple ways in which this happens.
Firstly, from Theorem 1.1,

A(A)(€) = A"(A)(0),

76
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where A is the reverse of vector A, so reversing and conjugating the sequence
yields the same auto-correlation function:

A(AT)(0) = A(A)(®).
Secondly, Theorem 1.8 gives
A(G)(€) = A(F)(£)

where g(z) = f(z) + ¢, ¢ some arbitrary constant in Z,. Using the notation of
Section 1.6 for the algebraic normal form of the reverse of a function, the first
of these becomes

AH)(£) = A(F)(0),

where h(z) = —f(1 — z), the conjugation being accomplished by the negation
of f. Thus for any given generalized Boolean function f in m variables over Zj,
adding a constant to f, or reversing and negating f, or the combination of the
two, results in another function that has the same auto-correlation function as
f-

For the binary case, for functions of 1,2 or 3 variables, a simple computer
search shows that these are the only ways functions may share the same auto-
correlation, and so sets of such functions have size at most 4. However when
m = 4, sets of size 8 in fact exist, i.e. there are functions sharing the same auto-
correlation with seven other functions, so there must be other mechanisms at
play (the quadratic part of these functions is in fact one of the three ‘pathological’
functions previously mentioned in Section 2.2: xgx1 + Tox3, Tox3 + T1T2 Or
zox2 + x1x3; they are covered by Corollary 3.5 in Section 3.3 which follows).
One such mechanism is given by Theorem 3.3 in the next section, but first some
observations about the difference between two sequences are made.

Definition 3.1. The length n sequence a = (ag, a1,...,0n-1), a; € Zg for all ¢
and g even, is said to be symmetric if

a; =0p—1—4, 1=0,1,...,n—1.
The sequence a is said to be antisymmetric if
a; :an_l_i-i-g modg, ¢=0,1,...,n—1.
O

It is well known that for a binary Golay complementary pair of sequences
the difference between the sequences is antisymmetric [13, Lemma 1.2], i.e. if

A(A)(6) + AB)(£) =0, L£#0,
then
a;+b+a, 1.i+b,1.5=1 mod?2
or € +éep_1_;=1 mod 2,

where ¢; = a; + b; mod 2 is the difference between the sequences. This result
is put to good use in [13] for performing exhaustive searches for complementary
pairs. The following analogous result shows that the difference between binary
sequences sharing the same auto-correlation is in fact symmetric.
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Lemma 3.2. Let a,b be binary sequences that have the same auto-correlation
function, i.e.

A(A)(¢) — A(B)(£) =0 for all £.

Then
a; +b;+ap—1-;+by,—1-;=0 mod2, +i=0,1,...,n—1

That is to say, the difference between the two sequences, €, given by
g =a; +b; mod 2
18 symmetric, i.e.
€g+éen1i=0 mod2, +=0,1,...,n—1.
Proof. The difference in auto-correlation functions gives

n—1—¢
3 ((—1)‘“+ai+l - (—1)”i+”i+l) —0for£=0,...,n—1.  (3.1)
=0

When a; and a;,¢ ‘agree’, i.e. a; = a;i¢, the term (—1)%T%+¢ contributes ‘+1’°
to the sum. Likewise when they ‘disagree’, a; # a;;¢, the term contributes ‘—1’
to the sum. Letting

0, = no. of agreements between a; and a;4¢ fori =0,...n —1 - ¢

¢o = mno. of disagreements,

and similarly for b, then clearly

Op + ¢p =n — ¢,
and (3.1) becomes
0o — ¢a — Oy + ¢ = 0. (3.4)
(More formally
n—1-¢
$a = Z (a; +ai¢ mod 2)
i=0
ea:(n_e)_(ﬁaa

and similarly for b.)
Subtracting (3.3) from (3.2) gives

0o + ¢o — O — ¢ =0,
which when added to (3.4) gives

20, — 26, =0
which implies O, = Oy
so that ¢a = ¢p from (3.2) and (3.3).
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Now consider the sum

n—1—¢
Se=3 (ai+aie+b +bisg) mwod2, £=0,....,n—1.
1=0

Agreements between a; and a;4¢, and similarly for b, do not contribute to the
sum, and thus

St = ¢+ ¢p mod 2
= 2¢a mod 2, as ¢a = ¢b
=0 mod2, £=0,...,n—1.
Now manipulate the sum as

n—1—¢
Sy =

g

(@i + @jte + bi + bit)
i=0
n—1-¢ n—1
(@i +bi) + Y (ai + )
i=0 it
n—2—4¢ n—1
= Y (a+b)+ > (ai+b)+ar+btanio+bu1
i=0 i=t+1
=S t+ag+b+an_1¢+by,_1¢ mod 2

I
]

But, as shown above, Sy =0 mod 2, £=0,...,n—1, and S, = 0, and so
ag+bp+a, 1 ¢4+b,1¢=0 mod2, £=0,...,n—1,

that is, the difference €, between the two sequences is symmetric, as was to be
shown. n

Clearly a function is symmetric if the reverse of its vector equals itself. Thus
in algebraic normal form terms, a function f is symmetric if the reverse of its
algebraic normal form merely equals the function itself, i.e.

f(l—=z) = f(z)

(and likewise, antisymmetric is f(1 — ) = 4 + f(z)). The difference between
two functions over Zg4, ¢ > 2, which share the same auto-correlation due to
the ‘reverse and conjugate’ rule above is also symmetric. Suppose f(z) and
g(z) = —f(1 — x) are such functions, then their difference is

f(z) —g(z) = f(z) + (1 - =z),

the reverse of which, f(1 —z) + f(1 - (1 —z)) = f(1 —z) + f(z), is just the
same thing. However, over Z4, ¢ > 2, it is also possible to get pairs of functions
sharing the same auto-correlation for which the difference is not symmetric. For
example, over Z4 with m = 3, the functions

2(zoz1 + T122) = (0,0,0,2,0,0,2,0) and
2(z1z2 + Tow2) + 321 + 29 = (0, 1,3,0,0,3,1,0),
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both have the auto-correlation (vector)
(85 _]-7 Oa 37 Oa ]-7 O’ 1)7

but have the difference
(0,3,1,2,0,1,1,0),

which is clearly not symmetric, and thus the above lemma does not generalize
to g > 2.

With the knowledge of the above lemma, a search, based on that in [13] for
complementary pairs but using a symmetric difference, was conducted to look
for pairs of functions sharing the same auto-correlation function. The findings
generalized to the two results of the next section.

3.3 A Construction for Functions with the same
Auto-correlation

The following theorem gives some conditions under which a pair of restricted
functions may share the same auto-correlation function. The idea is based
around the fact that reversing a function does not affect its auto-correlation
function, but in fact not all of the function needs to be reversed in order for this
to still be the case. If after restricting it is possible to identify two functions in
two distinct sets of variables, then the (restricted) function obtained by revers-
ing and negating the first of these functions and leaving the second untouched
will have the same auto-correlation as the original (restricted) function. Note
that in the theorem the normal restriction on ¢ being even is removed, i.e. ¢
may be odd or even.

Theorem 3.3. Let the m wvariables xg, ..., xy,_1 be partitioned into three sets

I={xiy,...,zi,_, } where 0 <ip <1+ <51

<m
Jo<Jji-<jJg—1<m—

V/AN/AN

J={zjy,...,xj_,} where0
K ={zg,...,xm-1} \ (T U J),

(so the size of K is m — s —t). Let f be a generalized Boolean function in the
m wvariables xg,...,Tm_1, which after restriction on the wvariables x in K, is
defined as follows:

f(xo, - ’wm_1)|x:c = Fl(:cio, - ,xis_l) + FQ(:C]'O, e ,ibjt_l)
‘|‘L(.’L‘i0,...,.’L‘Z‘s_1)+h1, (35)

where: Fy(z;y,-..,xi,_,) is a generalized Boolean function in the s variables in
I; Fo(zjy,...,2j,_,) is a generalized Boolean function in the t variables in J
(and so distinct from those in I); L is any linear function also in the variables

i I, namely
s—1

L(@igs- 2%y 1) = D Gia%ins  Gia € La,

a=0
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and hy is an arbitrary element of Zq.
Let F'{ be the reverse of Fy. Then the functions
flece=FPi+F+L+h
and fl|x:c = —Fl + Fo + L + ho,

where hy is also an arbitrary element of Zg, have the same auto-correlation
function.

Proof. Consider the difference between the auto-correlations of the correspond-
ing complex-valued vectors:

AR _) () — AF'[,_)(0),

where x is all the restricting variables in the set K. We need to show that
this is zero for all values of £ = 0,1,...,2"™ — 1. Perform a further restriction
over all variables not in the function Fp, i.e. over the variables in the set .J,
x' = zjyzj, ... 2j,_,, and expand both auto-correlation functions using Corollary
1.16 to obtain

S T(AF], o) O — AF | ) ©)

c/

+ Z (C(F‘xx':cc’l’F‘xx’:cc'z)(e) B C(F,‘xx’:cc’l’Fl‘xx':cc'z)(e))' (36)

cj#ch

Consider now the algebraic normal form of f ‘xx’:cc’:

flir—eer = (F1 + Fo + L+ hy)

x'=c’ "’

Now as F5 is only in the variables in J, over which we are restricting with x’, it
will reduce to an element of Z,, depending on the value for ¢/. Denote this by
r(c'). The functions F; and L will both be unaffected by the restriction because
they are not dependent on any of the restriction variables. Thus we have

f‘xx’:cc’ =+ L+ hl + T(CI)' (37)
Similarly, the restriction of f’ is

fl‘xx’:cc’ - _Fl +L+hy+ T(Cl) (38)

Now find the reverse of f |xx’:cc” denoted by f ‘xx,:cc,, by replacing z; Ey 1—ux;
for ¢ = 4g,41,...,%s—1 in its constituent functions: F; reversed is just F'y; from
Section 1.6, the reverse of a linear function is the sum of the coefficients minus

the function, i.e.
s—1
L= Z gi, — L.
a=0

Thus

f|xx/:cc, =F,+L+h;+r(c)
s—1
=F1+ Y g, — L+hi+7(c).

a=0
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Add this to equation (3.8),

fl ‘ f ‘ _
xx'=cc’ + xx'=cc’

s—1
—Fi+L+h+re)+Fi+)> g, — L+h +7(c),
a=0
and re-arrange to get
s—1
f,|xx’:cc’ = _f|xx':cc' + Z Gia + hl + h2 + 27‘(0,)
a=0
- _f|xx’:cc’ + 7

where 7 = 325 gi,, +hi+ha+2r(c') is an element of Z,, dependent on ¢’. That
is, after the restrictions, f’ is the negated reverse of f plus a constant. In the
associated complex-valued vector, the effect of the negation is to conjugate the
entries, and thus recalling the notation from Section 1.9.4 that F < 18 vector
F|x:c with its non-zero entries reversed, and whose non-zero values are given

by f|,_., the reverse of f| __, we have that

‘xx’:cc’ = w’yﬁ*|xx’:cc"
Then

A(F,‘xx’:cc’)( ) = A([Fl‘xx’—cc’])(e) by Lemma 1.20
= A(w ‘xx’—cc’]) (ﬁ)
= A([F ‘xx/_cc,])(e) by Theorem 1.8
= A([F*| . _.))(®) by definition
= A([F‘xx,fccf])(f) by Theorem 1.1
=AF|,_..)0 by Lemma, 1.20,

and for all £. Thus, for ¢’ fixed, each term in the sum of the auto-correlation
functions in expression (3.6) becomes, for all £,

A(F|xx’:cc’)(£) B A(F,|xx’:cc’)(£) - A(F|xx’:cc’)(é) B A(F‘xx’:cc’)(e)
=0.

Now consider the cross-correlations. From (3.7) it is seen that
f‘xx’—cc f‘xx’—cc’ + T(CQ) - T(cl)
= f‘xx’:cc’l + 5’

where § = r(c}) — r(c}) is an element of Z,, dependent on ¢} and c5. Similarly
from (3.8)

f,‘xx’:ccf2 = fl|xx’:cc’1 + T(CIQ) - lr(cll)
- fl|xx’:cc’1 + 0.
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Then for fixed ¢} and ¢/, and for all £, each term in the cross-correlation sum in
expression (3.6) becomes

C(F|xx’:cc'1 ; F|xx/7cc12)(e) - C F’ |xx’—cc’1 ’ F’ |xx’:cc’2) (E)
= C‘([F|xx’:cc [F|xx'—cc )(EI)

= C(F'] o —eer ) [ | e D () using Lemma 1.20
C[F|yr—eer 1 0 e D)
- C([FI| /] w‘s[F"xx,_cc ])(3') by above
=w™ [F\xx,_cc F|xx,:cc 1))
C([F"xx,_cc, ], [F |xx,_cc ])(gl)) by Theorem 1.8

(A([F|xx’*cc )( ) [Fl|xx’*cc1])(£,))
*(AP| e, D) = AP _ee D)) from above

W
0

where £/ = £ — (ug — u1), uy is the index of the first non-zero entry in the vector
. ‘xx,_cc, and ugy that of ( Thus all terms in both sums of expression
g §
(3.6) are zero for all £, and so

|xx’—cc

AF| _)0) —AF'| _)(@) =0, £=0,1,...,2" 1,
i.e. the two functions have the same auto-correlation function as claimed. O

Example 3.4. As an example, let m = 8 and let the functions be over Z4. Let
set I = {zg,x1, 2,23} and set J = {x4,x5,26,27}, and so set K is empty and
thus there is no restriction. The following functions have been made up more
or less at random, but the size of I, being 4, has been specifically picked to be
high enough to allow for some order 3 and 4 monomials in F}, which means its
reverse is non-trivial, and in turn the difference between f and g (given below)
is far from obvious. So, with

Fy = 2zxgx12923 + 3202123 + T9T1 + TpX2 + Tox3

Fy = x4x6T7 + 32425 + T4x6 + T4X7 + 275

L =2x1 4+ 3z
hi=1
hy =2,

then

— Fl = 2x0x1T2T3 + 220x1T2 + Tox1X3
+ 2xpxox3 + 2212923 + 22021 + ToT2 + 22129
+ 2z9z3 + 3x173 + 22973 + 271 + 379 + 223,
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and so

f=Fi+FB+L+th
= 2xgx1T003 + 3xpT 123 + Tox1 + ToTo + ToLs3
+ z4z6x7 + 3T4T5 + Tax6 + TaT7 + 225 + 221 + 32 + 1,
g=—F1+F+L+hy
= 2x0T1T2T3 + 2x0T1T2 + Tox123 + 2202223 + 221 T273
+ 2x9z1 + Tox2 + 22179 + 27023 + 32173 + 27973
+ 229 + 223 + T4xgT7 + 3T4T5 + T4Te + Tax7 + 225 + 2.

Then direct computation shows that indeed
A(F)(L) = A(G)(¢), £=0,1,...,255.
It can also be confirmed that the difference between f and g:

f—9=2xyz122 4+ 2202123 + 22022%3 + 2T1T2T3
+ 3xpx1 + 22129 + 3T0T3 + X123 + 22923 + 221 + 2 + 223 + 3

is symmetric. O

The difference between the functions in the theorem is
Fi+Fi+hi — hs.
From the discussion in the previous section, since the reverse of this,
Fi+F, +hy— hy,

is just the same thing, the difference is clearly symmetric. The example shows
that this is far from obvious when the reverse of F; bears little resemblance to F;
itself. However, when the function F} is a path, its reverse is particularly simple,
leading to the following corollary which allows for a much easier construction
of functions with the same auto-correlation function. Note that now g must be
even.

Corollary 3.5. Using the same notation as the theorem, let f be a generalized
Boolean function over Zg, q even, in the m variables x, ..., Tm—1, which after
restriction on the variables x in K, is defined as follows:

f(:to, - ’wm_1)|x:c = P(.’I}Z‘O, e ,ivis_l) + FQ(.TjO, - ,:Ejt_l)
—i—L(:EiO,...,.'L'Z's_l)—i-hl (39)

where: P(xi,,...,Ti,_,) is a path in the s > 2 variables in I, viz:

s—2
q
P(in’ s ’wis—l) = 5 Z wiﬂ(a)xiﬂ'(a'i‘l)
a=0
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where T is a permutation of {0,1,...,s — 1}; Fo(zj,, ..., xj,_,) is a generalized
Boolean function in the t variables in J (and so distinct from those in I); L is
any linear function also in the variables in I, namely

s—1

L(@igs-+ 1 %iy 1) = O GiaTins i € Ly,

a=0

and hy is any element of Zg.
Then the functions

flyee=P+F+L+mn
and f,‘X:C =P + %(IZW(O) + xiw(s—l)) + F2 + L + h2

where Ti (o) and Ti (o gy GTE the end points of the path P, and hy is any element
of Zq, have the same auto-correlation function.

Proof. In the theorem, put F; = P. From Lemma 1.9, the negated reverse of
P, —P, is

_ ‘ .
P = —(P+L(i) + 7o) + (35— 1) mod q))

2
q q
=P+ 5(3%(0) + Iiﬂ(s_l)) + (5(3 —1) mod g)
= _Fl’
using the fact that —Z = £ mod ¢, g even. This then gives

—F1+ F+ L+ h
=P+ g(xiw(o) +@i )+ P+ L+hy+ (%(s —1) mod q)
=P+ g(xir(o) + xiw(sq)) T+ L+ hy,

which by the theorem has the same auto-correlation function as f |x:c. O

3.4 Complementary Subsets from Theorem 1.27

In this section it is shown that for quadratic forms consisting of a number of
disjoint path segments, the complementary set given by the construction of
Theorem 1.27 may be partitioned into subsets which all form complementary
sets in their own right. Thus the PMEPR of words in the coset are in fact
less than that given by Theorem 1.27. This is due to the fact that within the
complementary set there are functions which satisfy Corollary 3.5 above, and
which thus share the same auto-correlation function, the effect of which is to
reduce the number of distinct auto-correlations that sum to zero across the set.

Suppose that () is a quadratic form in m variables over Z, that satisfies the
following construction. Partition the set {0,1,...,m — 1} into the s + 1 sets I;
of size m:

IJ = {ij,()az.j,la"-aij,mjfl}, ] :0,1,...,8,
and such that |I;| =m; > 2,
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and so m = ijomj- Let each of the m;, j = 0,1,...,s, be a bijection
7 :{0,1,...,m; — 1} — I;, and then let ) be given by

S m]—2

Q= %Z Y ()T (k1)

j=0 k=0

and thus @ consists of s + 1 distinct path segments, each of which has end
points Zr, (o) and Z;(m;-1). Choose one of the longest paths to be the path for
Theorem 1.27 purposes, i.e. pick r € {0,1,...,s} such that
— || = I.
my = || 012;%5“ ilts
and let a be the index of either of the end points of path r, i.e. a = 7,(0) or

7r(my —1). Let the sum of the number of indices in all the sets except I, be K,
ie.

S
K = Z m; =m — M.
§=0
J#T
Thus deleting the K vertices indexed by sets I, j # r leaves the path suffix r,
and so by Theorem 1.27, the following 25€+1 functions form a complementary
set:

S
Q+L+ %(Z > dipmy + d:ca>, dix,d € {0,1},
7=0 kEIj
J#r
where as usual L is any affine function of zg,...,Zm, 1.
Arrange the coefficients dj;, into two binary vectors. The first, dg,q4, of length
25, containing the dj; for both end points of the s paths:

dena = (d07r0(0)a dOﬂ'o(mo—l)’ d17r1 (0)7d17r1 (m1—1)s-+>
drfl'/rr_l(O)adrflm_l(mr_lfl)a dT—|—17rr+1(0)7 dr+17rr+1(mr+171)’ ceey
Ay (0)s Doy (me—1))

and the second, d,, of length m —m, —2s(= K —2s), containing the remaining
d;j, for all the points which are ‘internal’ to the paths:

dInt = (d07r0(1)7 d07r0(2)a R ad07r0(m072)a d17r1(1)7 LERE)

d’l‘*l’lrr_1(m7_172)a dr+17r,+1(1)7 SRR dsws(msz))'

Thus each of the above 2X+1 functions is represented by a particular value of
dg.g, di, and d = 0 or 1. Let f be one of these functions and consider its dg,4
vector. Taking the 1’s complement of any adjacent pair of coordinates, the first
of which has an even index, i.e. adding 1 mod 2 to each coordinate, is equivalent
to adding ¢/2 times a pair of end points to f (since in the function the actual
coefficients of the z; are either 0 or ¢/2 added mod ¢). So if we complement
coordinates indexed by 25 and 2j + 1 (j # r) we form

q
[+ 5(%,-(0) + T (m;—1))-
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The path segment to which the appended end points belong appears in f, and
thus taking this path as P in Corollary 3.5, this function has the same auto-
correlation function as the original function f (and note that no restriction is
applied in the corollary). Moreover, complementing other such pairs, by the
same mechanism, results in further functions with the same auto-correlation.
Thus for a given value of dg,.q there are 2° ways that we can perform this
complementation and still have a function with the same auto-correlation as the
original, and this is true for all values of d, and d. The set of 2K+1 functions
thus splits into 2K+ = 25 = 2K—=s+1 getg of size 2%, each consisting of functions
sharing the same auto-correlation function. Let A;(£),i = 1,...,25%! represent
the auto-correlation functions of the 2X+1 functions, and that the functions form
a complementary set means the auto-correlations sum to zero, i.e.

2K+1

> Ai)=0, £+#0.
=1

The preceding argument shows that there are at most 2K=5+1 distinct A;(¢),
each occurring at least 2° times, and so the sum may be written as

2K—s+1

2° 3" A () =0, L£#0,
7j=1

where the i; are distinct, from which it is seen that the corresponding functions
in fact form a Golay complementary set of size 2K —5+1,

The above shows that the function f represented by particular values of
dg.g, A, and d shares the same auto-correlation function with the following 2°
functions:

S
f+ %ng(ﬂ%(o) + i (mi—1))s  dj € {0,1},
Jr

i.e. the functions obtained by adding a multiple %d;- of both end points of each
of the paths, except for suffix r, to f. In order to form the complementary sets
of size 2K75%1, a set of dg,q vectors of size 2° needs to be established such that
complementing any pair of even-indexed coordinates in any dg,q vector does
not take it to another vector. One way to achieve this is to set dj.(m;-1) = 0,
j=0,1,...,s, j # r, for all 2° combinations of djm;00=0o0rl, j=01,...,s,
j # r (thus all pairs of coordinates in all vectors are either ‘00’ or ‘10’, and
the complements of these, ‘11’ and ‘01’ do not appear anywhere in any of the
vectors). Representing that part of the sum

S
> Y
j=0 kel;
J#r

concerning the points internal to the path by

dInt . X7
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then the following functions form a complementary set

S
q q
Q+L+ E(dlnt -x +dz,) + 3 Zd;-:vﬁj(o), d; € {0,1}.
§=0
J#r
There are 2 choices for d, 25=2% choices for dy,, and 2° choices of the d;-, giving
a total of 21K —2s+s — 9K—=s+1 fypctions in the set as required.

Thus we have proved the following refinement of Theorem 1.27:

Theorem 3.6. Suppose that QQ, a quadratic form in the m variables xg, ..., Tm—1
over ZLg, is a disjoint union of s+1 path segments, and where the number of vari-
ables in the longest path is my, as detailed above. Then the coset Q+ RMgy(1,m)
is a union of Golay complementary sets of size 2™ ™ —5t1  and consequently
every word of the coset has PMEPR at most 2™ ™r—s+1, [

3.5 Functions Meeting the Bound of Conjecture 1 for
an Arbitrary Number of Isolated Vertices

Using Theorem 3.6 above it is straightforward to construct functions that satisfy
the bound of Conjecture 1, and which have an arbitrary number of isolated
vertices. Recall from Chapter 2 that Conjecture 1 states that if in the graph
of some quadratic form () some k > 1 vertices are deleted, and this results in a
graph consisting of a path and isolated vertices, then the PMEPR of the coset
of Q is at most 2¥*1. Thus if the @ from above consists of s = k length 1 path
segments, and one path segment of length 1 or more, deleting one end point of
each of the length 1 path segments will leave k isolated vertices and a path. By
way of example and to keep things simple, take all the bijections 7; to be just
the identity, and construct @ as

B
—

Q=

NGRS

q sy m — 2
T2+l + 5 %wiwm, k< {TJ )
7=

.,
Il
(=)

Thus the k£ length 1 path segments are %CCQZ'CL'QH_l, 1 =20,...,k—1, and the path
segment of length 1 or more is % Z;’;}z ziZi+1. There are m, = m — 2k variables
in the path of length 1 or more, and so from the theorem, every word in the
coset of ) has PMEPR less than 2m—(m—2k)—k+1 — 9k+1 51 thus Q satisfies the
bound of Conjecture 1. It is clear that many such functions can be constructed
in this manner.

Example 3.7. For example, the following binary ¢ in m = 10 variables has
k = 3 paths of length 1 and the longer path has length 3:

Q = zox1 + 23 + T4T5 + TeT7 + T7Tg + TTy.

The graph for this @ is shown in Figure 3.1, and the deletion of, say, vertices
1, 3 and 5 clearly leaves a length 3 path and 3 isolated vertices (being 0, 2 and
4). Direct computation confirms that the sum of the auto-correlations of the 16
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Figure 3.1: The graph of @ in Example 3.7

functions
Q + dozo + dozo + dazs + dszs, do,da,ds,ds € {0,1}

is indeed zero everywhere except at the zero shift, so they form a complementary
set, and thus the PMEPR of every codeword in the coset of ) will be less than
23+ = 16. O

3.6 Conclusions

In this chapter functions sharing the same auto-correlation function have been
investigated. Using the properties of path functions, a useful non-trivial method
of constructing such functions has been presented. The result was accomplished
by searching for Boolean functions sharing the same auto-correlation, using the
fact that their difference must be symmetric. The search of course showed
many other functions sharing the same auto-correlation, but it was only the
amenable properties of paths that lead to the description of the pairing here. It
may be possible to come up with descriptions of other such pairings by further
examination of the forms of the functions involved.

For functions which consist solely of a disjoint union of path segments it has
been shown in Theorem 3.6 that the complementary set given by Theorem 1.27
in fact consists of a number of smaller complementary subsets. This latter result
in fact accounts for the reason the three ‘pathological’ binary functions

Tox1 + T2T3, Tox2 + T1T3, Tox3 + T1T2,

have PMEPRs a factor of 2 below that predicted by Theorem 1.27, as noticed
in [32] and previously commented on in Section 2.2. Theorem 3.6 has also been
used to construct examples of functions which meet the bound of Conjecture 1
and satisfy the hypothesis for an arbitrary number of isolated vertices following
the deletions—however in Chapter 4 counterexamples are produced which show
that Conjecture 1 cannot be true in general.



Chapter 4

Lower Bounds on PMEPR

4.1 Chapter Overview

This chapter concentrates solely on binary sequences. By utilizing the ‘weight
structure’ of certain sequences it is possible to show that the sequence has large
instantaneous power at some particular time, and this may be translated into
a lower bound on the PMEPR of the corresponding coset. The existing results
and background are given in Section 4.2, and the ideas are extended using the
technique of restriction in Section 4.3 to provide a new lower bound on the
PMEPR of a coset. This lower bound is then used in Section 4.4 to manufacture
some counter-examples (all having three or more isolated vertices) to Conjecture
1 of Chapter 2. The difficulties encountered in extending the technique are given
in Section 4.5, and some conclusions are drawn in 4.6.

4.2 Introduction

The main focus of this body of theory has clearly been to develop second-order
cosets of the first-order generalized Reed-Muller code whose codewords all have
low PMEPRs, i.e. the PMEPRs of the codewords are bounded above. For binary
Reed-Muller codes however, it is also possible to show that within particular
cosets there exist words with high PMEPRs, i.e. that the PMEPR of the coset
is subjected to some lower bound. In this section some of the existing lower
bounds are stated, along with the techniques used to derive them: these are
then extended in Section 4.3 to provide a new bound. The main theoretical
tool is the weight distribution of second order cosets of RM5(1, m) [25, Chapter
15]. The general idea is to show that a word with a particular weight has large
instantaneous power at some specific time ¢: the peak envelope power must then
be greater than or equal to this amount; the PMEPR of the word is greater than
or equal to this amount divided by the mean power, and thus in turn the PMEPR
of the coset is too.

First an expression for the instantaneous power of a binary sequence is de-
rived that is peculiar to the binary case. Let A = (Ao, A1,...,4,-1) be a
real-valued length n binary vector, i.e. A; € {+1,-1}, 5 =0,1,...,n — 1, and
in particular we note that A7 = A; for all j. Referring back to Section 1.5.1, the
instantaneous power of the signal, P(A)(t) is obtained by substituting equation

90



Ch4 Lower Bounds on PMEPR 91

(1.1) into (1.2): from a subsequent discussion in that section we may put f; = 1,
and with fj the frequency of the first carrier, we get

n—1 n—1
P(A)() = ZAje%ri(fo-i-j)tZAke—Qm'(fo-}-k)t
J=0 k=0

_ (Z A;(cos 2r(fo + j)t +isin2m(fo + j)t))

J

X (Z Ay (cos2m(fo + k)t — isin2m(fo + k)t))
k
= (Z Aj cos 2 (fo +j)t)2 + (Z Ajsin 27 (fo —l—j)t)2
J J

2
= (cos 27 fot Z Ajcos2mjt — sin 27 fot Z Ajsin 27rjt)
J J

2
+ (sin 27 fot Z Aj cos 2mjt + cos 2m fot E Ajsin 27rjt>
J J
2 2 2 2
= cos” 27 fot (Z Aj cos 27rjt) + sin” 27 fot (Z Ajsin 27rjt)
J J
— 2 cos 27 fot sin 27 ft (Z Ajcos 27rjt) (Z Ajsin 27rjt)
J J
2 2 2 2
+ sin 27rf0t(z Aj cos 27rjt) + cos* 27 fot (Z Ajsin 27rjt)
J J

+ 2sin 27 fyt cos 27 fot (Z Ajcos 27rjt> (Z Ajsin 27rjt)
J J

n—1 2 n—1 2
= <ZA]- cosZth) + (ZAj sin27rjt> .

Jj=0 J=0

(Note that, as previously in Section 1.5.1, (i) the frequency of the first carrier,
fo, has vanished from the expression, and (ii) it is straightforward to show that
for all t > 0, P(-)(3 +t) = P(-)(3 — t), and thus P is symmetric about t = %
and that P'(-)(t) = P(-)(3 +t), for all ¢, is an even function.)

Our primary interest here is when the vector A derives from some Boolean
function f. Thus let f be a Boolean function in m variables, with, as usual,
f = (fo, f1,---, fom_1) the length n = 2™ vector of all its values. Through the
real-valued vector F, equivalent to A, where F; = (-1)fi forj =0,1,...,2™—1,
we may relate the above expression directly back to the values of f, to get

n—1 2 n—1 2
P(f)(t) = (Z(—l)fi cos27rjt> + (Z(—l)fi sin27rjt> , (4.1)
=0 =0

taking care not to confuse the f; to be any frequency!

Suppose that f is an arbitrary codeword of the coset Q@+ RM5(1,m) for some
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quadratic form @). Then as first noted in [8], the power at ¢ = 0 simply becomes

n—1 2
P(£)(0) = (Z(—nfj)

7=0
= (2™ — 2wty (),

where wty (f) is the Hamming weight of f, and it is also clear that we get
P(£)(1) = P(£)(0).

Thus if the weight of f could be readily determined, then so also could the
power at t = 0. To this end it is possible to call upon the well-established
theory of binary quadratic forms. The main goal in establishing this theory for
the current thread is Theorem 4.2 below, which gives the weight distribution
of a second order coset of the first order Reed-Muller code, and this relies on
a theorem due to Dickson, Theorem 4.1 below, through which the definition of
the rank of a quadratic form is given. However, later in Section 4.4, Dickson’s
theorem is called upon again, along with the results on the weights of certain
quadratic forms which lead to the proof of Theorem 4.2, given here as Lemma
4.3. In order to prevent a piecemeal exposition of this theory, all of the required
results are now presented, even though not all of them are relevant to the current
section.

First the affect that an affine transformation has on the weight of a vector
is considered. A very rudimentary (and hence rarely expounded) fact is that
applying an invertible affine transformation to a (strictly) Boolean function f
does not affect the weight of its associated vector f. This is seen by considering
an arbitrary affine transformation of f, say a function g given by

g(z) = f(Az + B),

where A is an invertible m X m binary matrix and B a binary m-tuple. Let
z' = Az + B. Since A is invertible there is a one-to-one relationship between
z and z': thus the value of g at z is the value of f at z’, and so the vector g
associated with g is obtained by permuting the coordinate positions of f, and in
particular, the number of 1’s in both is the same.

This is extremely useful if f can be transformed into a form for which the
weight of the associated vector may be more easily determined. Dickson’s The-
orem, [25, 35|, does exactly that—it states that any Boolean function of degree
< 2 can always be transformed such that the quadratic part of the function is
placed into a canonical form. Those parts of theorem needed here, and in the
current nomenclature, are now stated:

Theorem 4.1 (Dickson’s Theorem). (1) Any Boolean function of degree < 2
in m variables can be transformed via some affine transformation to the form

h—1 m—1
E T2;%2i4+1 + E a;T; + €
i=0 i=0



Ch4 Lower Bounds on PMEPR 93

for some 1 < h < [m/2] and some a;, € € Zoy.
(2) Further, if the linear part in (1) is only dependent on xg, ..., Ton_1, i.e.
a; = 0,1 > 2h, then a further transformation may be made to get
h—1
Z$2i$2i+1 +eée1, e1=0orl
i=0
Proof. See [25]. O

The number of variables, 2h, in the canonical form 2?2—01 T9;T2i+1 is termed
the rank of the original quadratic form, and that any second order Boolean
function may be reduced to such a form allows the weight distribution of the
corresponding coset to be established, as given by the following theorem.

Theorem 4.2. [25, Theorem 5, pj41] Let Q be a quadratic form in the m
variables xg, ..., Tm_1,

Q(zo,...,Tm-1) = E 4GjTixj, Qij € Lo,
0<i<j<m

and suppose Q has rank 2h. Then the coset Q + RMy(1,m) has the following
weight distribution.:

Weight ‘ Number of words

2m—1 _ 2m—h,—1 22h
2m—1 2m—|—1 _ 22h—|—1
2m—1 +2m—h—1 22h

This theorem says that codewords in the coset have one of just three possible
weights: these are termed, in the obvious way, ‘minimum’ weight, ‘half’ weight
and ‘maximum’ weight. The maximum and minimum weights depend on the
rank of the quadratic form, but the half weight does not, merely being half
the length of the codewords. It is proved by determining the weight of the
canonical form, which is readily done, and is shown in the next lemma (which
is a distillation of the lemmas used in the proof of Theorem 5 in [25, p441], and
the equivalent in [24].)

Lemma 4.3. (i) Let f(z), a Boolean function in the m variables xg, ..., Ty 1,
be given by
h—1 2h—1
f(z) = 23721'3721'4—1 + Z air;+¢e, €=0orl,
i=0 i—0

where 1 < h < |m/2]. Then the weight of vector f is either 2™~1 + 2m~h=1 op
2m—1 _ 2m—h—1_

(i) Let g(x), a Boolean function in the m variables xq,...,Tm—1, be given

h—1 m—1
g9(x) =) zaimai1 + Y aimi,
i=0 i=2h
where 1 < h < |m/2|, and where not all the a; are zero. Then the weight of g
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Proof. (i) By part (2) of Dickson’s theorem above, f can be transformed via
an invertible affine transformation to the form

h—1

fl(z) = Z$2i$2i+1 +e¢e1, e1=0or 1.
1=0

Consider now the function Z?:_ol Z2i%2;+1 as a function in just the 2h variables
Toy...,Top_1: if ;g = 29 = +++ = T9p_o = 0 then there are 2" choices for the
values of z1,x3,...,Top_1 for which the function is zero. On the other hand
if any of zg,xo,...,Zs,_o are non-zero (which happens in 2" — 1 ways), then
we have a non-zero linear Boolean function in the h variables z1,x3,..., %o, 1,
which by Lemma 1.12 takes the values 0 and 1 equally often, 2"~! times each,
thus giving another (2% — 1)2"~! zeroes. Therefore the total number of zeroes of
Z?:_ol T9;T2;11 (regarded as in 2k variables) is 2% + (2" — 1)2h—1 = 22h—1 4 2h—1,
and thus the total number zeroes when regarding it as in the full m variables is
2m—2h(92h=1 4 9h=1y — gm—1 4 gm—h—1 Thus the weight of f’ is:

2" — (2m T2l =l 9m Tl when gy =0

om — (gm~1 _gm~h=ly — gm=1 4 gm=h=l " when ¢ = 1.

Applying the inverse transformation to go from f’ back to f does not affect
these weights (as discussed above), and so f will also have one of these weights.
(ii) Immediate from Lemma 1.12. O

The lemma shows that a function whose quadratic part is the canonical
form ZZ'-L:_OI Z2i%2+1, and whose linear terms consist only of variables involved in
the canonical part, has either maximum or minimum weight, and indeed such
functions account for all those having either maximum or minimum weight,
since by the second part of the lemma, the involvement of any other linear
terms implies the function has half weight. (Repeated use of this fact is made
in Section 4.4.)

Proof of Theorem 4.2. Using Theorem 4.1, transform a typical member of
the coset to the canonical form, and count the number of each type as given by
Lemma 4.3. O

Return now to the expression for the power at ¢t = 0:

P(£)(0) = (27" — 2 wtx(£))%.
Theorem 4.2 gives the weights of f as f varies over the coset Q@ + RMs(1,m):
thus at least one codeword f has weight 2™~ — 2%~P~1 "and for this f,

P(f) (0) _ (2m _ 2(2m—1 o 2m—h—1))2 — 22m—2h — 2m2m—2h,

so that the PMEPR of the coset is at least 22", A lower bound on the PMEPR
for Q@+ RM>(1,m) can thus be derived from the rank of Q). A simple application
of this leads to a result that first appeared in [8], and subsequently in [32, 33],
that shows that the bound on PMEPR from Corollary 1.25 is tight when m is
odd:
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Figure 4.1: Envelope power for Example 4.5

Theorem 4.4. Suppose m is odd and let

m—2
Q(:I;'Oa cee 7xm—1) = Z Lr(@)La(i4+1)s
=0

where T is a permutation of {0,1,...,m — 1}. Then the PMEPR of the coset
Q + RM5(1,m) is equal to 2.

Proof. Since m is odd, the rank of @ is 2h < m — 1. Then m — 2h > 1 and,
from the discussion above, the PMEPR of the coset is at least 272" > 21 = 2.

From Corollary 1.25, it is at most 2. O
Example 4.5. The envelope power for 0 < ¢ < % (recall that it is symmetric

about ¢ = 1) of the function
Tox3 + T1x3 + T1T2 + T2T4

is shown in Figure 4.1, showing that the peak power occurs exactly at ¢ = 0,
giving a PMEPR of exactly 2. O

4.3 The Instantaneous Power at t = 5

The ideas of the preceding section are now extended to the case when ¢t = Qu%,
u > 0. By adding a specific linear term to the function f and restricting the
resulting function in a specific way, it is possible to obtain an expression for the
instantaneous power in terms of the weights of the restricted components of f.

Consider first the case of u =0, i.e. t = % Substituting into (4.1) gives

1 n—1 1 2 n—1 1 2
P(f)(i):( (—1)%i c0327rj§> +<Z(—1)ff sin27rj§>

=0

where the second summation has vanished entirely as sin7j = 0 for all j, and
the substitution cosmj = (—1)? has been made in the first summation. The
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alternating signs from the cosine terms may be reproduced by adding x( to f.
Put
f'=f+=
then
(_1)fj’- _ (_1)(f+$0)j — (_1)j+fj_

Thus

(2™ — 2wty (f))?
(2™ — 2wty (f + xo))2.

So, as with the power at ¢ = 0, the power at ¢ = 5 is determined from the
Hamming weight of a function: in this case f + xo.

The situation becomes a little more complicated at t = %, = 1, but exami-
nation of this case leads on to the general one. Write F; for (—1)%i, and expand
the sums to see the effects more easily:

P(f)(%) - (2(-1)/2' cosij%) 4 (i(—nfj sin27rj%)

=0 =0
= (Fo+0—F+0+F+0—Fs+---— F,_5+0)°
+(O0+F +0-F+0+F5+---+0—F,_1)

Both summations now contribute to the power. The alternating sign pattern is
now different: cos %! alternates in sign as ﬂ takes on values that are w apart,
i.e. the sign now changes at every other value of j (and not for every value
of j as previously), and the sine terms similarly. As before this effect can be
reproduced by adding a linear term to f, this time by adding z1, so as to change
the value of f (from 0 to 1 or vice-versa) at every fourth position. Also, only
the even terms are to be added in the cosine sum, the odd ones in the sine
sum. This can be achieved by restricting the function by zy and then using the
notion of compression, introduced in Section 1.9.5, to regard the function to be
only in the m — 1 remaining variables 1, ..., Zy—1. The two summations in the
expression for power thus become dependent on the weight of the two restricted,
compressed ‘halves’ of the original function f plus z1, which using the notation
of Section 1.9.5 becomes:

P(E)() = (2™ —2-wta(F + $1|z0:0))2 + (2™ = 2wty (F+ xl\mo .
This case is simplified due to the fact that half of the sine and cosine values
disappear: in the more general case which now follows, this is no longer so, and
a sum across all of the restricting constants appears in both the cosine and sine
summations.
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For the general case then of t = 51, u > 0, substitute once more into (4.1).
The linear term to be added to reproduce the sign changes is now z,, and the
restricting variables to gather the terms appropriate to each trigonometric term
are X = Ty_1--- Lot

n—1 N 2 n—1 N\ 2
P(f)(y%) = (ZO(—l)fﬂ' Cosg—i) + (2}(—1)12 sin g—j)
Jj= j=

2u—12mu ] . 2
- (Z D (—1)F2+k cos LE R k)>
u
k=0  j=0 2
2¢_12m %] . 2
i e T(2%) 4 K)
_|_ (Z Z (_1)f2 j+k SIHT

k=0 j=0
2u—1 o 2t 2
- r fau J
= ( CcOS T Z ( 1) 2 J+k( 1) )
k=0 J=0
U __ m—u __ 2
2v_1 i 2 1 i
+1 > sin > (=) fir(—1)7
k=0 j=0
2v—1 2mv—1 2
= ( cos 7T_k Z (_1)(f+$u)2“]+k>
u 4
k=0 J=0
U m—u __ 2
2ol g2 1 _—
+ Z sin oo Z (—=1)V Ttk
k=0 §=0

2% 1 Tk o 2
= (Z cos 2—u(2m_” -2 wty(f +wu|x:k))>

k=0

k _
+ (Z sing—u(Qm_“ -2 -wty(f + wu‘x:k))>

k=0

where use has been made of cos ”(2;Z+k) = (—1)’ cos g—,’f, sine similarly, and in
the restriction, k is the binary expansion of k. (Note that in the case when
u = 0, x would be null, so take (f + wo)‘x . to be just f + xg, thus giving the

same result as derived above.)

To further simplify, let

Wi =27 — 2wty (f+ 2|, ) for k=0,...,2* — 1,

xX=
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and expand both factors to get

u_1 2u_1 2
P(f)( 2u+1 (Z Wi, cos —> (Z W), sin —)

2u_1 2uU_12v—1—¢
9 7rk w(k+£)
g 2 _
EO Wi cos? + E E WiiWi+e COS cos ———= 7

2u_1 U 12414
wk wk . w(k+¥£)
+ Z Wk sin? o + 2 Z Z Wka%smz—smT
k=0 =1 k=0
2v—1 2U—12¥—1—¢

—ZWk +22 Z WkW;H_gcos
2v_1 2i11k02u14

Z Wk +2 Z cos E WiWikie

2“—1 é
2 AW
) + Z ) cos — u

where W = (Wy,...,Wau_1), and in the definition of A(W)(£) we have used
that W; = W}, since Wy, is real. Note the similarity between this expression and
(1.4): the difference being that the auto-correlation function in this expression
is of a sequence of sums of elements of the original sequence. Even though each
W}, derives from different components of the vector associated with f + z,, as
f is quadratic they can only take on one of the same three values. To see this,
consider a Boolean function f of degree < 2 in m variables, as usual consisting
of a quadratic part () and an affine part L, i.e.

f=Q+1L

As already pointed out in Section 1.11, the graph of the restricted function
f‘x:c is independent of the choice of the restricting constant ¢, or in other
words the quadratic part of f |x:c does not depend on c¢. This is unaffected by
the compression operation, which merely re-labels the variables . Thus for the
compressed function appearing above, mA _y» We may denote the quadratic
part by Q, say, a function in m — u variables, and let its rank be 2h. Then
mLLc:k represents a word in the coset Q + RMy(1,m — u), and so has a
weight given by Theorem 4.2, i.e.

wy (F+ 2|, ) = 27— 2Rl o
2m—u—1’ or

2m—u—1 + 2m—i_1—u—1

respectively known as minimum weight, half weight and maximum weight, and
where h < [™5%]. The three possible values taken by W} are thus found by
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substituting each of these into the expression for W:

Wi = 2% — 2wty (f + 2
=2m% —g(2m vl
=0 for half weight words,

Wi =277 — 2wty (f + 2|, )
— gm—u _ 2(2m—u—1 T 2m—h—u—1)

x:k)

= tom-h-u for min/max weight words.

Setting

Wy = 2w, W} € {0,+1},

the power of 2 term can be factored out from the auto-correlations to obtain the
1

final expression for the instantaneous power at ¢ = 5¢:
2v 1
1

P(£) () = 2222 (A(W’)(O) +2 ) A(W')(£) cos ;T—f) (4.2)
=1

In order to get a useful lower limit on the power from this expression, the
conditions under which it is maximized need to be established. For certain
functions f, for which the associated vectors W’ have auto-correlations which
are reasonably large and easily determined, this can be achieved, as is shown in
the following theorem.

Theorem 4.6. Let Q be a Boolean quadratic form in m variables, and let 2h
be its rank after restriction on the restricting variables x = 1 --- g9, where u
is an integer, 1 < u < m—1. Let f = Q + L be some codeword in the coset
Q + RMy(1,m). With k the binary expansion of k, if the weights of the com-

pressed functions m|x:k, k=0,1,...,2% — 1, fit one of the configurations:

m‘x:k is minimum weight for k=0,1,...,a—1, and
mazimum weight for k = o, ..., 2% — 1,
with 0 < a < 2%,
or
Fi—?u‘x:k is minimum weight for k=10,1,...,a — 2,
half weight when k =« — 1, and
mazimum weight for k = a,...,2% — 1,
with 1 < a < 2% — 1,
or

either of the above with ‘minimum’ replaced

with ‘mazimum’ and vice-versa,
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then the PMEPR of the coset is greater than gm—2h—2 (and where

manimum weight is: wty (m|xzk) = gm-u=1 _ gm—h—u-1
half weight is: = gm—u-l
mazimum weight is: — gm-u—l 4 2m_7‘_“_1).

Proof. First, since the summation in (4.2) involves terms between 0 and 7, we
use the symmetry of cosine to reduce the range of the summation by half, so

consider the term
ou_1

é
Z AW')( cos = Py, say.

Since cos(m — 0) = — cos 0, write this as
2u=1_1 ol 2u—_1 0
! !
Z A(W') cos—+cos§+ Z A(W') cos—
£=2u-141

g U4 — U4

D AW')(8) cos Tl > AW)(£) cos(m — )
(=2v—=141
2t SR ml
= A(W')(0) cos oy — D AW)(2" - ) cos u

=1 =1

2u-1_1

ml
= (A(W') () — A(W')(2* — £)) cos — Su”
where a simple substitution to carry out the second summation over 2% — £ has
enabled the two summations to be combined. By establishing expressions for
the auto-correlations of the vectors W', the difference A(W')(¢) — A(W')(2% —£)
can be substantially simplified.

From the work preceding the theorem which equates the weight of the com-
pressed functions deriving from f to the value of the corresponding coordinate
of W', the length 2% vectors that we are interested in look either like

(+1,...,+1,-1,...,-1),
~———
« terms
or
(+1,...,+41,0,-1,...,-1),
N ——
« terms

or —1 times these. Note from Theorems 1.1 and 1.8 that reversing such a vector
or multiplying it by —1 does not affect its auto-correlation, and so without loss
of generality we assume the first « coordinates are +1, and that « is restricted
to half the length of the vector. Considering the case without the zero entry, we
thus have, for 0 < a < 2%71,

W/=+1, i=0,1,...,a—1
W/ =-1, i=q,...,2%—1.
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In the definition of auto-correlation, breaking down the sum into partial sums
whose terms are either all +1 or all —1 gives

2v—1—¢

Z W z—|—£

a— Z 1 a—1 2v—1-¢

Z WW+£+ Z WWZI+£+ Z WWZI+£
i=a—~{ i=a

Then for 0 < £ < a:

a—~0—1 2v—1-¢

Z W W+l + Z Wi Wz’+£+ Z Wi Wz’+l

=0 i=a—4 i=a

=(a=-0)+(-OH)+2"-L—-a)

=2% _ 3/.
For a <4 < 2% — a:
a—{0—1 2v—1-¢
Z WiWiy, + Z WiWiy, + Z WiWii,
=0 i=a—~ =

_0+ZW R O )

:O—I-(—a) 2 -4 — )
=2 -1 - 2a.

And for 2% —a < £ < 2%:

a—~0—1 a—1 2v—1-¢
Z WW—I—é'i_ Z WWZI—I—Z_F Z WWzl+é
i=a—{ =
2u—f—1
=0+ Y WW,,+0
=0
=0+(-(2"-2¢)+0
=0 - 2"

Note that for £ = 0 we have
AW')(0) = 2%,
and that when o = 0, i.e. the vector is all of the same sign,
AWH@) =2" -2, 0<L< 2",
as is well known. Now when 1 < 4 < o we get 2% —a < 2% — £ < 2% — 1, giving

AW')(0) — A(W")(2" —£) =2 — 3¢ — ((2* — £) — 2%)
=2 — 20,
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and when oo < £ < 2" — @ we get a < 2% — £ < 2% — @, giving

AW)(0) — AW)(2" —0) =2" — £ — 22— (2" — (2" — ¥) — 20)
=2" -2/

Thus, since a < 2v=1 means that 2% — a > 2u—1, we have that
AW)(0) — AW)(24 =) =2" =20, for1<L<2" — 1.

Consider now the case when the W’ contain the single zero entry. So for the
case l < a < 2"*1,

W/ =+1, i=0,1,...,a—2

W/ =-1, i=aqa,...,2% - 1.

Then for £ =0
ou_1
:ZWZIWZI
ou_1
—ZWW’-I—ZWW’
:(a—1)+(2 —a)
=2 1.
Forl1 </< a:
a——f—1 a—1 2u—1—¢
AW @) = Y WW/ o+ Y. WiWl,+ > Wiwl,
=0 i—a—~ =
a—{0—2 a—2 2v—1—¢
= WiWle+ Y WiWl e+ > WiWw/,
1=0 i=a—~ =
=(a—L-1)+(-(£-1)+ (2L —q)
= 2% — 34.
Fora</<2% -«
a—~0-1 a—1 2¥—1—¢
A(W')(0) = WiWl o+ Y. WiWl o+ > Wiw/,
=0 i=a—L i=a
a—2
=0+ ) WiW/,+(2"—£—aq)
1=0

=04+ (—(a—1)+ (2" -4 —a)
=2 -4 —-2a+1.



Ch4 Lower Bounds on PMEPR

And for 2% —a < £ < 2%

a—{-1 a—-1 P )
AW @) = Y WiW/ o+ Y. WiWl,+ > Ww,
i= i=a—{ i=a
2u_g_1

=0+ Y WW/,+0
=0

:0+(—Z2“—£))+0
=(—2"
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Again, to establish the difference between the auto-correlations, for 1 < 4 < «

we have 2¥ —a < 2% — £ < 2% — 1, and so

AW')(£) — A(W')(28 — £) = 2% — 30— ((2" — £) — 2¥)
= 2" _ 20,

and for a < £ < 2% — a we have a < 2% — £ < 2% — @, giving

AW () —AWH(2" —0) =2" — L —2a+1— (2" — (2" —£) — 20 + 1)

=2 —2/4.

Thus for either type of vector W' we get

AW () — AW')(2¥ =) =2v =20, for1<L<2v ! —1.

and so we now have

g wl
P = Z (2% — 2£) cos e
=1

Using the standard Taylor series expansion for cosine, we have that cosz > 1— g—?

and thus we get that

2u—1_1 262

T
P> Y (2 —26)(1 - W)
=1
1 2u—l_q
_ QTu Z (2'11*1 o g)(22u+1 _ 7TQ£2)
=1
1 2u—1-1
— 2Tu Z (23u —92utly  gu—1,242 + 7T2£3)
=1
1 3ugu—1 22u+1 u—1 u—1
:QTu(2 @ -1 - (@ -2
2u—1ﬂ.2 2

6

((2u71 _ 1)2u71(2u _ 1)) + %((Zufl _ 1)222u72))
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after some not inconsiderable manipulation. Since
AWNH(0) > 2% -1

for both types of vectors, substituting for this and the above expression for P
back into (4.2) gives

1 2m—2h—2u  ou 2u—2 u—1 w? 2u—6 ?
P(f)(gp7) > 2 (2 —1+2(2 7 -2 - o +E)>
. 2
_ 92m-—2h-2u (22u 1 22u 5, T 1)
+ 24
2m—2h—2u 22u 1 ’/T2 1
_ i )
) 21
_ 2 1 7-(2
_ 92m—2h-2u (22u 11 gu-1(y _ T Iy, ™ 1)
( 48 2) + 24
f 1 1 s 2
_ 92m—2h—2u (2211, 12 o1t Ty T 1)
(2 48) + 24
= 1 2 2
92m—2h—2u (22u 11 L 1)
> 48) t o
_ 22m72572

7

where we have used © > 1 to get the last inequality. Thus the power at ¢ = ﬁ

is certainly greater than 22m=2h—2 and so the peak power will be too, and

on dividing by the mean power, 2, we get that the PMEPR will be at least
2m—2h—2_ |

For the case u = 2, t = % it is a straightforward matter to calculate P(f)(%)
for all 3* possible W' vectors. Doing so for the 16 vectors that satisfy the
theorem, for example,

(+1,-1,-1,—-1) and (-1, -1,0,+1),

gives the values
1 —
P(E)(5) = (4+2v2) - 22m-2h=t
and

PE)(L) = (31 2v/3) - 2m2t

g
respectively. Since both 4+2+/2 and 3+ 2+1/2 are greater than 4, and on dividing
by 2™, it is seen that both these power values imply a PMEPR> 2™~ 2h=2_ thus
agreeing with the theorem.

The trick in being able to use this theorem is in finding a quadratic form
Q@ that has a low rank after restriction, and within whose coset there exists an
f = @Q + L for which the linear terms, after adding x,, and restricting, actually
give functions with weights in the right combination, as specified by the theorem.
For the t = % case this is possible and is explored in the next section. The
difficulties encountered in attempting to generalize the method are returned to
in Section 4.5.
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4.4 Families of Binary Sequences providing Counter-
examples to Conjecture 1

Using the theory of the preceding section, for the case of u = 2, t = %, two
families of quadratic Boolean functions are now constructed, which satisfy the
hypothesis of Conjecture 1 of Chapter 2, but within the cosets of which there
exist words whose PMEPRs are bigger than the bound given by the conjecture.
The idea is to find an f whose rank, 2h, after restriction using the restricting
variables x = z1xy, is small, and whose four compressed functions have a weight
configuration given by Theorem 4.6, so that the lower bound on the PMEPR
from the theorem, 2™~"=2  ig greater than the upper bound on the PMEPR
from the conjecture, 2¥!, where k is the number of delete vertices.

Recapping from Chapter 2, if in the graph of some quadratic form ) some
k > 1 vertices are deleted, and this results in a graph consisting of a path and
isolated vertices, then Conjecture 1 says the PMEPR of the coset of @ is at
most 2¥*1. Chapter 2 contains proofs of the conjecture for some special cases
involving at most two isolated vertices, and where @ is a quadratic form over
Zq. In this section two families of Boolean functions are constructed (i.e. @ is
over Zs), each having at least three isolated vertices following the deletions, for
which the PMEPR of the coset is greater than the upper bound on PMEPR
from the conjecture, thus showing that Conjecture 1 cannot be true in general.
Here the path that would be left if the deletion operations were to be carried out
is called the residual path, but note that the restriction which is equivalent to
these deletion operations is NOT the same as the restrictions which are applied
below. The residual path is measured by the number of edges it has in the graph,
and which equals the number of second order terms in its algebraic normal form.

Throughout this section, in determining the weight of the compressed func-
tions for Theorem 4.6, the final re-labelling operation has been omitted in order
to keep the notation as simple as possible, but on the understanding that the
restricted functions involved are regarded as being in a reduced number of vari-
ables, and that the re-labelling could be done if required.

4.4.1 Family 1

Functions in this family have 1 delete vertex, a 1-edge residual path, and m—3 >
3 isolated vertices, and so m > 6, and are given by the quadratic form @, in m

variables:
m—2

Q = oz + Z TiTm—1-
1=0
So the delete vertex is m — 1, the residual path is ¢z, and the isolated vertices
are 2,...,m — 2. The graph for @ is shown in Figure 4.2.

Then we claim that there exists a word in the coset @ + RMs(1, m) which
has PMEPR> 4, and thus Conjecture 1, which for the single delete vertex says
all words in the coset have PMEPR< 2'*! = 4, is not true for this family.

To prove the claim we find a word in the coset whose power at t = % is large,
i.e. the PMEPR of the word as given by Theorem 4.6 is greater than the bound
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Figure 4.2: The graph for Family 1

given by the conjecture. Restrict Q)+ z2 using the restricting variables x = z1zg
over all values:

m—2

(Q+ x2)|$1$0:00 =19+ Z TiTm—1 = T2 + Q say
i=2

(Q + .’132)|$1$0:01 =Ty + Tm-1+ Q
(@+ $2)|I1$0:10 =Ty +Tm 1+ Q
(Q + x2)|z1$0=11 =l+tazo+ Q’

where we have put

m—2
Q= E TiTm—1-
=2

Q@ is a quadratic form in the m — 2 variables zo,...,2y—1: apply the following
transformation to get it into the canonical form of Theorem 4.1, thus determin-
ing h,

So
m—2 m—2 m—2
2 ) At ' 't
Q = TiTm—1 = Q =Ty z; + TiTm—1
't
= ZoTmp—1,

which (apart from re-labelling) is clearly of the required form with A = 1. Thus,
according to Lemma, 4.3, the functions

~/ ! !
Q +aryt+am 17, 1 +¢E, az,an 1,6 € Lo,
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are maximum or minimum weight words. Applying the inverse transformation

shows that the functions

m—2

Q+as Z ZTi + Gm-1Tm-1 + €
i=2

are also maximum or minimum weight words. Thus a suitable word from within
the coset @ + RMs(1,m) would be

f:Q+Z$i-

Restricting f 4 x5 using the restricting variables x = x1x( over all values gives:

m—2 m—2
(f+22)| gm0 = Q@+ T2+ D @i =Q+ >
=3 =2
m—2
(f + ‘T2)‘m1z0:01 =Q+ Z Ti + Tm—1
=2
m—2
(f + xQ)‘:EUU():lO = Q + Z T + Tm—1
=2
m—2
(f+a2) |, oy = L+ Q+ D i,
=2

from which it is seen that all four are maximum or minimum weight words:
(f + x2)|wlw0:01 = (f+ xQ)‘wm:lO and so have the same weight, and since
(f+z2) ‘wlwozu = (f+z2) |wlw0:00+1, if (f+x2) |w1$0:00 is maximum or minimum
weight then (f 4+ z2) ‘581160:11 is minimum or maximum weight respectively. Thus

as the restriction constant varies as
00 01 10 11

the weights vary as

min min min max, or
max max maxX min, or
min max max max, or

max min min min.

These all satisfy the first configuration in Theorem 4.6, and as A = 1 and
m > 6, f thus has PMEPR > 2m2h=2 — 9m—4 > 92 je  the PMEPR of the
coset is greater than 4, as claimed.
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Figure 4.3: The graph for Example 4.7

28 | '

Figure 4.4: Envelope power of @ + x3 + x4 + x5 + z¢ for Example 4.7

Example 4.7. As an example, take m = 8. Then the quadratic form is

6

Q = zor1 + E Ty,

1=0

so the delete vertex is 7, the residual path is zyz1, and the isolated vertices
are 2,3,4,5 and 6. The graph for @) is shown in Figure 4.3. The lower bound
from Theorem 4.6 is 2™ * = 2%, Part of the envelope power for the function
Q + z3 + x4 + x5 + x6 is shown in Figure 4.4, clearly showing a peak greater
than 16 at t = %, being much larger than the upper bound of 4 predicted by
Conjecture 1 (also indicated on the plot). It should be noted that there are many
other functions in the coset which do not satisfy the conditions of Theorem 4.6,
but which nevertheless have large peaks in their power at values of ¢ different
from %, e.g. Q+ x3+ x4 + x5, part of whose envelope power is shown in Figure
4.5. O

4.4.2 Family 2

Functions in this family have 2 delete vertices, a 1-edge residual path, and
m — 4 > 3 isolated vertices, and so m > 7, and are given by the quadratic form
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12 +

Figure 4.5: Envelope power of Q) + 3 + x4 + x5 for Example 4.7

Q inm

0 1

Figure 4.6: The graph for Family 2

variables:

m—2 m—3
Q = zoz1 + 5 TiTm—1 + E ZiTm—2-
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So the delete vertices are m — 1 and m — 2, the residual path is z¢z;, and the
isolated vertices are 2,...,m — 3. The graph for this @ is shown in Figure 4.6.

Then we claim that there exists a word in the coset @@ + RM3(1,m) which
has PMEPR> 8, and thus Conjecture 1, which for the 2 delete vertices, says all

words in the coset have PMEPR< 22*! = 8, is not true for this family also.

The method of proof is as for family 1, thus restrict () + x2 using the re-
stricting variables x = z1xg over all values:

m—2 m—3
(Q+ $2)‘m1$0:00 =z + Z TiTm—1 + Z TiTm-2 = T2 + Q say
=2 =2

(Q+22)|, o1 = T2+ Tm—1 + Zm—2 +Q
(Q+22)|, o010 = T2+ Tm—1 +Tm—2 +Q
(Q + x2)‘1‘11‘0:11 =1+ Ty + Q
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where we have put

~ m—2 m—3
Q= Z TiTm—_1 + Z TiTym—2- (4.3)
=2

=2
Apply the following transformation to Q:
m—2
ro = Z :II;
i=2

:Ci:a:;, 3<tr<m—2

/ /
Tm—1 = Ty + Tiy g

So
m—2 m—3
Q= TiTm—1 + E ZTiTm—2
1=2 =2
m—2 m—2
= Ql _ ( ! + ) I+( i + i ) !
Tm—1 Tm—2 T; Tm—1 Tm—2 T;
=2 =3
m—2 m—3
§ : rot rot
+ Lilmym—2 + LiTm—2
=2 =3

which again, apart from re-labelling, is of the form given by Theorem 4.1 with
h = 1. Due to the fact x,,_2 = 7/, , in the transformation it is readily seen
that

Q + Tm—2 ¢ THTy, 1 = Q' + T,

and thus, according to Lemma 4.3, the functions
QI‘F.’L';n,Q +a2x'2 +am_11171m71 +e, a9,0pm—1,€ € Lo,

are maximum or minimum weight words. Applying the inverse transformation

m;:a:i, 3<tr<m—2

Tm—1+ Tm—2,

8

|

A
I

thus shows that the functions

m—2
Q+ Ty—o + ay Z Ti + a1 (Tm—1 + Tm—2) + €
i=2
m—3
=Q+0a2 Y Ti+am 1Zm1+ (1 + 03+t 1)Tm 2+,
i=2
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or more explicitly

m—1
Q + Tm-2, Q+sz, Q+zm1, Q+) =,
=2 =2

are maximum or minimum weight words. Thus a suitable word from within the
coset @ + RM5(1, m) would be

f:Q+ZCCi-

Restricting f 4+ x5 using the restricting variables x = x1xg over all values gives:

B m—3 - m—3
(f + x2)|w1w0:00 - Q + 22+ Z Zi = Q
1=3 1=2
m—3 m—1
(f+x2)|z1$0:01 =Q+tr2+zTm 1+tTm o+t sz =Q+
=3 1=2
B m—3 - m—1
(f +22)|, gm0 = @+ T2+ Tme1 + T2 + domo =Q+
1=3 =2
m—3 m—3
(f+o2), 0y =1+ Q+22+ Y o = + ) @
1=3 1=2

from which it is seen that all four are maximum or minimum weight words, and as
before: (f+z2) ‘1'11'0 o = (f+z2) |$ 2010 and so have the same weight, and since
(f+z2) ‘EIEO " (f+:v2)| \zg—00 T 1 if (f+z2) |w1$0:00 is maximum or minimum
weight then (f + z2) |w1wo:11 is minimum or maximum weight respectively. This
results in the same weight configurations as Family 1, and thus satisfies the first
configuration in Theorem 4.6, and as h =1and m > 7, f thus has PMEPR
> 2m—2h=2 _ gm—4 > 93 je. the PMEPR of the coset is greater than 8, as
claimed.

Example 4.8. For this example, take m = 7. Then the quadratic form is

5 4
Q = zoz1 + E T;Te + § T;Ts5,
i=0 i=0

so the delete vertices are 5 and 6, the residual path is xzgz1, and the isolated
vertices are 2, 3 and 4. The graph for () is shown in Figure 4.7. The lower bound
from Theorem 4.6 is 2™~ * = 23. Part of the envelope power for the function
Q@ + x3 + x4 is shown in Figure 4.8, showing a peak > 8 at t = %, again greater
than the upper bound of 8 predicted by Conjecture 1 (also indicated on the
plot). O

4.5 Difficulties in Extending the Technique

The previous section has shown how the results of Section 4.3 may be used to
construct some relatively simple quadratic functions within whose cosets there
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Figure 4.7: The graph for Example 4.8

Figure 4.8: Envelope power for Example 4.8

exist words with PMEPRs greater than the upper bound predicted by Conjecture
1, thus showing that the conjecture cannot be true in general. However, attempts
to generalize the constructions of the previous section run into a variety of
difficulties, and these are explored in this section.

4.5.1 Increasing the number of delete vertices

To make use of Theorem 4.6 to construct a counter-example to Conjecture 1,
the PMEPR from the theorem, 22~2 must be greater than or equal to the
PMEPR from the conjecture, 2571, where there are k delete vertices, and this
imposes an upper limit on h:

m—2h—2>k+1,
m—k—3

=h<
2

Staying with the t = % case, suppose we extended the 2 delete vertex case of
Example 4.8 of Family 2 above in the obvious way: add an extra delete vertex,
so now m = 8, and connect all the delete vertices to all the other vertices, giving

6 5 4
Q = xzox1 + E T;x7 + E T;Te + E TiTs,
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Figure 4.9: Graph for @) of Section 4.5.1

so the delete vertices are 5, 6 and 7, the residual path is zgz1, and the isolated
vertices are 2, 3 and 4 (see Figure 4.9 for the graph). For this example, m =
8,k = 3, and so a PMEPR greater than 23*! = 16 is sought: the above limit on
h implies that h needs to be less than or equal to 1. Restricting on the variables
x = x1x¢ gives the quadratic part

6 5 4
Q= E T;r7 + E T;Te + E T;Ts5,
i=2 i=2 i=2

which under the transformation

! ! !
To = Ty + T3+ Ty
:ci:xé, 3<1<K7

gives
Q' = w'Qx'7 + wgwé + wgwé + xéwg + wéxg + w'ng

The graph of Q' is the complete graph on 4 vertices, i.e. K4 (emphasized in the
figure), and Q' in fact has full rank [24, p55], i.e. 2h = 4 so that h = 2. Thus
Theorem 4.6 only gives a lower bound of 22 = 4, and so it cannot be guaranteed
that there exists a function in the coset whose power at ¢t = % would yield a
PMEPR greater than 16. (In fact computation shows that there are some words
whose powers at ¢t = % yield PMEPRs of = 6, but which of course are not big
enough to disprove the conjecture. Nevertheless computation also shows that
the coset of this ) does contain words with PMEPRs> 16: several exhibit peaks
that exceed 16 at values of t either side of ¢t = %, but not at %. Attempts to
explain these cases have been made, but no effective analysis was forthcoming.
Plots of some typical words are appended at the end of this chapter in Figures

4.18,4.19 and 4.20.)

4.5.2 Increasing the residual path length

At first sight it may appear that this would give similar problems to increasing
the number of delete vertices: the rank of a quadratic form very roughly equates
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Figure 4.10: Graphs for Q (left) and Q of Section 4.5.2

to the number of edges and ‘complexity’ of its graph (many edges/highly ‘con-
nected’ tends to imply high rank, whilst few edges/more simply connected im-
plies a lower one), so after the restriction on the variables x = z1x¢, any extra
edges between the longer path and the delete vertices may contrive to make the
rank of Q high. However as the number of deletes & is held constant, and the
total number of vertices m increases to accommodate the longer path, the differ-
ence m — k actually increases, and so does not impose a tighter limit on A from
the expression h < m*Qk*?’, as it does in the example of the previous section. In
fact it is probable that counter-examples to the conjecture with a longer residual
path can be constructed for both the single and double deleted vertices cases for
u = 2: in both Families 1 and 2 in Section 4.4 if the residual path is increased to
length 2 (as zox1 + £122, and now with m — 3 — k > 3 isolated vertices) and the
new path vertex is connected to all delete vertices, after the restriction it is seen
that the form of () remains as the length 1 path cases shown, and so the rank
of @ is the same too. Further increases in length may also be possible: consider
that @ with a length 3 residual path and one delete vertex, and whose graph is
as shown on the left in Figure 4.10. After the restriction, the graph of Q is as
on the right in the figure. The expression h < m_Tk_?’ gives h < 2 in this case:
the simple transformation

Ty = Ty + T + 17

T3 = T4 + 77

T4 =Ty + 25 + 7Y

Ti=m, i=25,6,7,
leads to the canonical form in four variables, so that A = 2, and thus it may
be possible to find a suitable f, in the coset of ), which has large power at
t = %. With some persistence in establishing the transformation to get to the
canonical form, even longer residual path lengths may be possible. In fact it is
even conceivable that two more families, for k£ = 1 or 2 delete vertices, a length
£ > 1 residual path and m — (+1) —k > 3 isolated vertices could be constructed.



Ch4 Lower Bounds on PMEPR 115

4.5.3 Increasing the number of vertices

For a given number of delete vertices, i.e. with k fixed, it is of course possible to
increase m, and thus also the number of isolated vertices, until m_2k_3 is greater
than or equal to any given h. This approach may be adopted to circumvent
the problem of Section 4.5.1, but a certain amount of generality will have been
lost. Working with a larger value of h is also not without its disadvantages.
Continuing to consider the example of Section 4.5.1, in order to allow h = 2
requires that m satisfy 2 < m*23*3, that is m > 10. One is then faced with the
task of transforming the function whose graph is K, (Q' above) to get to the
canonical form, and then working backwards to see if an f can be found, all of
whose compressed functions fit one of the configurations given in Theorem 4.6.
The canonical form now has 4 variables in it, and so there will be a total of 16
functions of maximum or minimum weight which are possible candidates for the
four restrictions of f + x4: whether this makes the task easier or just confounds

it, either way it is quite an involved one.

4.5.4 Increasing the time parameter, u

Even though Theorem 4.6 is proven for 1 < u < m — 1, working with u > 2 also
presents difficulties. For u = 2 the restriction used is on two variables, x = 1z,
and the preceding sections have shown that a () can be devised that has a low
rank for both the 1 and 2 delete vertices cases. With u = 3, the restriction is
now on three variables, x = zox1xo: does this give enough extra scope to be able
to more easily manufacture a @) for 3 delete vertices? The extra restriction now
gives the ability to remove more edges from the graph, and as, roughly speaking,
more edges tend to mean higher rank, this could perhaps lead to a low rank after
restriction. However, with 8 restricted functions now to deal with, which can all
be either maximum, minimum or half weight, the problems of finding a specific
f within the coset which has a suitable combination of linear terms is more
acute. For h = 1 the canonical form arrived at after transformation has just two
variables in it, and by Lemma 4.3, combinations of this with the corresponding
four linear terms in these two variables are either maximum or minimum weight.
Then through the inverse transformation there will be the original (restricted)
quadratic form and combinations with two sets of linear terms (being the inverse
transformations of the above mentioned variables) which are either maximum or
minimum weight. Re-label the vertices of the above example to take advantage
of the extra restriction to get

6 5 5
Q = xzox1 + inm + inxg + zox2 + T172 + inxg,
so now the delete vertices are 2, 6 and 7, the residual path is zyz1, and the
isolated vertices are 3, 4 and 5 (see Figure 4.11 for the graph). Let

f=Q+L
7
where L:Zaixi—l—g, a;,qg € Lo,
i=0
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Figure 4.11: Graph for @) of Section 4.5.4

be a typical word in the coset @+ RM>(1,8). Restricting f + z3 on the variables
X = x9x1xg over all values, and ignoring the constant (which does not affect the
categorization as ‘max/min’ or ‘half’ weight) gives:
6 5
(f+ $3)| = Z z;T7 + Z T;Te + T3 + a3T3+asTs + a5Ts

Tox120=000
=3 =3

+ agxg + arxy
Q + (1 + a3)z3 + aszy + aszs + agze + arzy, say
(f+.’173)| = Q-I- (14 a3)zs + aszs + aszs+(1 + ag)zs

Tox1£0=001 —

+ (1+ar)zr

(f +23)|,,4,00—010 = (a5 001)
(f + $3)|w2$1w0:011 = (as 000)
(f +23)| 1, 0,000100 = @ + @323 + (1 + as)za + (1 + as)zs+(1 + ag)zs

+ (1 + a7)z7
(f+ 353)|$2Il$0:101 = Q+asr3 + (1 +ag)zs + (1 + a5)xs5 + agre + arzr
(f +x3)|w2m1w0:110 = (as 101)
(f +23)|,,0,002111 = (as 100).

Q is of the same form as that of Family 2 in Section 4.4 above, equation (4.3),
and so in fact h = 1 as hoped. From the above discussion there are just four
functions consisting of @ plus linear terms which have either maximum or min-
imum weight. Are there any combinations of the a; = 0 or 1, s = 3,...,7 for
which all eight of the above functions are these maximum or minimum func-
tions and thus satisfy the configurations of Theorem 4.67 Computation shows
the answer to be no, and in fact the best that can be managed is that at most
4 of them be either maximum or minimum weight, the rest being half weight.
Further computation over all 3% possible W’ vectors in (4.2) shows there are 12
values of z > 16 in z - 22m 206 thus giving P(f)(55) > 22™ 202, which are

~ {16.12,16.22,16.98, 17.22, 18.16, 18.75,
18.88,19.16, 21.58, 22.43, 25.27, 26.27},
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Figure 4.12: Graph for Q' of Section 4.5.4

and which would give a lower bound on the PMEPR of Zm_Zﬁ_Q(z 28-2-2 — 16
for the example). They arise from a total of 272 configurations, all of which
have < 3 half weight words in them. The above functions therefore cannot be
one of these configurations, and again it cannot be guaranteed that there exists
an f in the coset of () which has the power at ¢t = % greater than 16.

However, a slight alteration of the coefficients in ) gives

6 5
Q' = woz1 + Z Tiw7 + Z TiTe + ToT2 + T1T2 + TeT2 + T7T2,
=0 i=0
where the terms between delete vertex 2 and the isolated vertices 3, 4 and 5
have been removed (see Figure 4.12 for the graph). With f = Q' + L, where L
is as before, the restrictions are (again ignoring the constant):
6 5
(f + z3) |m$1$0:000 = Z ziTy + Z ZiTe + T3 + a3r3+asrs + asTs
i=3 i=3
+ agxs + arxy

= Q+ (1 + a3)x3 + 4wy + aszs + aewe + arwy, say
(f +23)| 1, 2,00m001 = @+ (1 + a3)a3 + aszs + asws+(1 + ag)ze
+ (14 a7)zr
(f+ 3)|w2w1w0:010 = (as 001)
(f+ 333)|$2$1$0:011 = (as 000)
(f +23)] 15,0100 = (as 001)
(f + ~’103)|mm$0:101 = (as 000)
(f + 3)|w2w1z0:110 = (as 000)
(f +23)] 4, ,00111 = (as 001),

noting that @ is the same as the previous example, and where it can now been
seen that there are just two sets of linear terms, and so a wholly maximum or
minimum weight configuration may be possible. Computation shows that indeed
Q' + z4 + z5 has the configuration
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0.02 0.04 0. 06 0.08 0.1 0.12

Figure 4.13: Envelope power for Q' + x4 + x5, of Section 4.5.4, about

=L
t= 16

max, min, min, min, min, min, min, max,

which whilst not satisfying Theorem 4.6, is one of the 272 configurations men-
tioned above, and so the function does have a peak at t = as is shown in the
partial plot of its envelope power in Figure 4.13.

L
16°

4.5.5 Re-labelling the vertices

The order in which the vertices are labelled in the graph of () has a major
effect on the envelope power of codewords in the corresponding coset. In the
examples in this chapter the labelling has generally been quite ‘structured’ in
some sense: the vertices forming the residual path come first, then the isolated
vertices, followed by the delete vertices. If they are re-labelled by applying a
random permutation, then the structure apparently responsible for the usable
properties soon disappears. As an example, consider the quadratic form from
Example 4.8,

5 4
Q=moz1 + Y TiZ6 + Y L5,
i=0 i=0
and apply the permutation (013654)(2) to the indices to get

Q' = 113 + 2175 + T3T5 + ToTs + TeTs + ToTs + T4Ts

+ Z1T4 + 324 + T2X4 + TeXa + ToT4.

(For convenience the graph of Q' is shown in Figure 4.14.) Since the permutation
is just an invertible linear transformation, the rank of Q' will be the same as
that of @), and hence via Theorem 4.2, their cosets also share the same weight
distribution. It can also be seen from the graph of Q' that after restricting on
the variables x = x1z9, Q' has the same rank h as Q (the triangular pattern
on removing vertices 0 and 1 is the same in both cases). However, in terms
of the power P(-)(t), the effect of the permutation is to drastically alter all the
phases of the sines and cosines in the signal, and so not surprisingly, the envelope
powers of the permuted functions exhibit different patterns from the original.
For example, Q@+ z3+ x4 was seen (Figure 4.8) to have a large peak at ¢t = %: the
permuted equivalent, Q' + zo + zg does not, and in fact falls below the bound
given by Conjecture 1 everywhere, see Figure 4.15. In other instances this is
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Figure 4.15: Envelope power for Q' + ¢ + zg of Section 4.5.5

the other way round: for example @ + zo + 1 + 2 + 3 + x4 + z¢ is below
the bound from the conjecture, see Figure 4.16, whereas its permuted equivalent
Q'+ o+ z1 + 29 + 23 + 5 + T is NOt, see Figure 4.17. In fact there are about
4 times as many words in the coset of Q' with peaks giving PMEPRs above the
bound as there are for @ (some of which do appear to be at ¢ a negative power
of 2).

4.6 Conclusions

In this chapter the weights of certain restricted vectors of particular Boolean
functions have been used to show that there is a peak in the corresponding
envelope power at some particular time. This then leads to a lower bound on
the PMEPR of the coset in which the function resides. This has been useful
in providing some specific examples, all containing 3 or more isolated vertices,
which show that Conjecture 1 cannot be true in general. There is clearly a
relationship between the rank of ) and the power for some of the situations
examined: the rank needs to be sufficiently high in order to keep the power low,
and it appears that it is the omission of this relationship which causes Conjecture
1 to fail.

From the examples in Section 4.5 it is clear that properties of codewords in
any particular coset may vary considerably, and it has been shown how altering



Ch4 Lower Bounds on PMEPR 120

0.1 0.2 0.3 0.4 0.5

Figure 4.16: Envelope power for the function Q + xo+ 1+ z2+ 3+
x4 + x¢ of Section 4.5.5

0.1 0.2 0.3 0.4 0.5

Figure 4.17: Envelope power for the function Q' + z¢ + z1 + z2 +
T3 + x5 + x¢ of Section 4.5.5

the parameters concerned (increasing the number of delete vertices, increasing
u etc.) can have a major impact on these properties. Thus whilst it has been
possible to construct some counter-examples to the conjecture by choosing their
structure carefully, picking one at random is unlikely to succeed, and it also
seems to be a difficult task to come up with an overall result relating rank,
length of residual path, number of isolated vertices and the number of deleted
vertices to the PMEPR of the coset of any general Q).

It should also be mentioned that [32, 33], as well as containing the result
given here as Theorem 4.4, also contain other results concerning lower bounds
on the PMEPR of cosets of quadratic forms (), where the (), as the current
work, are of very particular constructions. Similar counting techniques are used
in [8] to show that the coset @ + RMy(1,m), where @ is a path over Z4 and m
is even, contains a codeword with the maximum PMEPR as given by Corollary
1.25.
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Figure 4.18: Envelope power of () + x2, for the @) of Section 4.5.1,

showing peaks either side of ¢t = %

0.11 0.12 0.13 0.14 0.15

Figure 4.19: Envelope power for Q + z2 + x5 + z¢ (detail as above)
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0.11 0.12 0.13 0.14 0.15

Figure 4.20: Envelope power for Q + z2 + x5 + z7 (detail as above)



Chapter 5

Complementary Sets from
Pairs

5.1 Chapter Overview

In this chapter some new ways of constructing complementary sets are pre-
sented. The introduction recalls what a complementary set is, shows how a
simple, well-known method to construct some fits in with the techniques of this
thesis, and indicates how the ideas extend to the rest of the chapter. The sets are
based around the idea of compressing a restricted vector: how these fit in is also
shown in the introduction, and the relationship between the auto-correlations
of compressed and restricted vectors is examined. Section 5.3 contains the main
result of the chapter, the construction of complementary sets from the com-
pressed vectors of a restricted complementary pair. This is based on a result on
pairs of functions whose cross-correlations sum to zero at all shifts. In Section
5.4, using ideas on functions which share the same auto-correlation similar to
those in Chapter 3, complementary sets are constructed from a complementary
sequence. A non-trivial way of constructing pairs of functions that share the
same cross-correlation is given in Section 5.5 (a simple corollary to the result in
Section 5.3). Some conclusions are drawn in the final Section 5.6.

5.2 Introduction

Recall from the definition in Chapter 1 that a complementary set of sequences
is that for which the sum of the auto-correlation functions across all sequences
in the set is zero except at the zero shift. Such sets have been studied by Tseng
and Liu in [46, 47] and also independently (but at around the same time) by
Schweitzer, [40].

In [46, 47] it is stated that if we form two new sequences from a given se-
quence (of even length) by taking all the even indexed elements of the sequence
as one new sequence, and all the odd indexed elements as the other, and this
is done for all members of a complementary set, then the set of all the new
sequences is also a complementary set (of twice the number of half-length se-
quences as the original set). This is a simple consequence of re-ordering the auto-

122
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correlation function, at even shifts, of the original sequences. For example, con—
sider some vector A = (Ao, Ai1,..., A, 1): define A} = Ay, ,,i=0,1,...,5-1,
so A" = (41,4s,..., An 1) is the half-length vector of odd indices, and
Al = Ay, i =0,1,...,% =1, s0 A" = (Ag, Ag,..., Ap_2) is the half-length
vector of the even indices. Then the auto-correlation function of A at even
shifts is:

n—1-2¢
A(A)(20) = Z A AL o0, £=0,1,...,%—1
5-1-@ n_1-¢
= Y Apdbiot Y, Aniii AN
i=0 i=0
n_1-¢ n_j_g

— Z A”A”*g-l- Z A/ z—|—£
= A(A’)(f) + A(A”)(ﬁ),

that is, the auto-correlation of A at even shifts is just the sum of the auto-
correlations of the even and odd ‘halves’ at half the shift. By definition, the
auto-correlation functions of all sequences in a complementary set sum to zero
at all shifts except zero: thus by re-ordering the auto-correlations of all sequences
at even shifts in this way we see that the auto-correlations of all the even and odd
‘halves’ will necessarily sum to zero, and hence the new set is a complementary
set.

In [46, 47] the above result is really just seen as a special case—the main
thrust of that work is to build up complementary sets of longer and longer se-
quences by recursively concatenating existing complementary sequences in many
different ways. However, viewing the above result in the context of restriction
suggests a way in that it may be extended, i.e. to take a complementary pair of
sequences and split them up into shorter sequences, but in a much more complex
manner than just ‘every other term’ as above, and such that the new sequences
do still form a complementary set. Complementary sets are constructed in this
manner in this chapter: ‘splitting the sequence up’ is just the notion of com-
pression of a restricted vector, as introduced in Section 1.9.5, that is, of taking
a restricted vector and removing all the zeroes. The above result turns out to
be a special case obtained by restricting and compressing on the variable z(, so
we examine it first in order to see the possibilities for extending it.

Let F and G be a pair of complementary sequences of length 2™ = n, i.e.
for which we have:

AF)(0) + A(G)(£) =0, £#0. (5.1)

Restrict on z(, and expand the auto-correlation functions using Corollary 1.16
to get, for £ # 0,

A(F|w0:0)(£) + A( F\ D) + A( G\ )(€) + A(G|, 1))
+ C F‘J;O 0’ | To= )(e) + C F‘J)o 1 |$0 0)(£)
+ C G‘zo 0’ |w0:1)(£) + C G|z ‘wo 0 =0. (52)
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In order to clarify the following, let F° = F 26=0 and F* =F so=1" Then
from the definition of the restriction by zg,

o F; z::(),2,...,n—2
0 2=1,3,...,n—-1

- 0 §:0,2,...,n—2
F, +=13,....,n—-1
that is
F° = F|z _o = (F0,0,F,0, Fy,0,...,F,_5,0) (5.3)
F* = F|z0 . = (0,F,0,F3,0,Fs,...,0,F, 1).

Thus the first auto-correlation in (5.2) becomes:

AF|, _o)(0) = A(F°)(0)

n—1-4
Z EO zci}-Z
%—1 4] Bo1+[5)
Z F2z 21—|—£+ Z F2z+1F 2i4+1+4
1=0
%H%J

Z F5;F5} ,+ 0 (odd indexed F; zero)

%—1 15]

— Z FZz 2z—|—Z £ even

0 ¢ 0dd (odd indexed F} zero).

Continuing with the even shift case, put £ = 2¢':

5-1-¢
A(F‘zozo)(2gl): Z FQZ z—|—2€’
%flfﬁ'
= Z FQz’F;z'—i—Zé’
1=0
5-1-¢
— Z F// ZI—I:K’
= A(F”)(ﬁ’),

where, using the notation at the start of the chapter, F;’ = Fy;,i =0,1,..., 81,
that is F" = (Fy, Fy,...,F,_5) is the half-length vector of the even indices.
However, from (5.3) this is clearly just the compressed vector, since to form this
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we remove the zeroes from the restricted vector; that is, using the notation of
Section 1.9.5, F" = F|z0:0, and so

A n
A(F|z0=0)(2£,) = A(F|wo=0)(£1)7 l = 0,1,..., E -1

Arguing very similarly for A(F‘zo:l)(ﬁ) = A(F*)(£), we get that
AR, _,)(2l) = A(F')(¢)
— AF|,_)0),

where F' = (F1, Fs, ..., Fy_ 1) is the half-length vector of the odd indices, which
is the compressed vector F|

Next, consider the cross-correlation from (5.2):

C(F |, Flyo=) (D)

= C(F°,F*)(¢)
n—1—¢

= Z on z.—|—€
%—1 2] 51415

- Z Fyi o' + Z Frip 1 Foia e

i=0

%—1 LéJ

= Z F5F55 o +0 (odd indexed F are zero)

n l
5—1 3

2

— Z FyFylyy € odd

0 £ even (even indexed F} are zero),

that is the cross-correlation is always zero at even shifts. Again a very similar
argument shows that the cross-correlation C (F|x0:1, F|w0:0) (¢) is also zero when
£ is even, and similar arguments to all the above can of course be applied to G.
Thus when £ is even, all the cross-correlations in (5.2) are zero, and the auto-
correlations can be replaced by the auto-correlations of the compressed vectors

at half the shift. So substltutlng A( F‘ )(2¢') = A( F| )(¢') etc., where
L=200=1,2,. — 1, equation (5. 2) becomes
AF|, _ (@) + A(F\xozl)w) +AG, ) +AG|, _)E)=0, £+#0,

that is, as we already know, the four halves of the original sequences form a
complementary set. So, what has happened is that the cross-correlations in (5.2)
have vanished (albeit in a special way), leaving just the four auto-correlations
of the restricted vectors summing to zero, and then we can equate these auto-
correlations to those of the compressed vectors. What makes this case special is
that the cross-correlations vanish at even shifts due to the alternating pattern
of zeroes and non-zeroes in the restricted vectors, and this is also responsible for
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the direct relationship between the restricted and compressed auto-correlations.
Counsidering the more general case of k restricting variables x, the expansion of
(5.1) is, for £ # 0,

D (AF[_)O) + AG,_)®)
+ Z (C(F|x:c1’F‘x:cg)(£) + C’(G}|x:c1’ G‘x:cg)(g)) = O’ (54)

c1#£cy

and we can use properties of the functions f and g themselves in order to get
the cross-correlations to vanish, thus leaving the restricted auto-correlations
summing to zero, and then use this fact together with the relationship between
the compressed and restricted auto-correlations to show that the sum of the
compressed auto-correlations is also zero, rather than direct substitution. The
latter relationship is explored now; Theorem 5.3 in the next section shows when
the cross-correlations of the functions we are interested in sum to zero.

In calculating the auto-correlations of a restricted vector, A| __, and its
compressed counterpart, A <_c» 1t 18 clear that the same non-zero components
of vector A are involved, but that they appear at different shifts relative to each
other due to the zeroes in the restricted vector. The calculation of an auto-

correlation function for a vector A at a non-zero shift is seen from its definition,

n—1—¢
Z AAL, 1<L<n—1,

to involve evaluating and summing a number of products formed from the el-
ements of A with the elements of A*. It is reasonable to expect, but perhaps
is not immediately obvious, that all the non-zero products appearing in the
calculation of A(A|xzc)(7') over all 7 appear somewhere in the calculation of

A(K‘XZC)(K) over all £, and this is now shown. For an unrestricted vector (i.e.
one with no zero elements in it), at a given shift £, 1 < £ < n—1, as i varies from
0ton—1—4, we get n — £ products in the sum, and thus the total number of
products involved over all the non-zero shifts is 7 (n—£) = S0 £ = "(n DY

This is, not surprisingly, just the number of distinct products that can be formed

between pairs of elements of A and A*. A compressed vector A‘x:c consists of
2m—k:

non-zero entries, where k is the number of restricting variables x, and the
auto-correlation of K‘x:c, for a particular ¢ and over all non-zero shifts, thus
involves 2m~%~1(2m=k _1) products (put n = 2™ * in the above). The restricted
vector A|x:C on the other hand consists of n = 2™ elements, of which only 2™~ %
are non-zero. Suppose the indices at Which these non-zero elements occur are
805+ lom—k_1, 0 <49 <4 < -+ <idom-k_; < n — 1. Consider ¢ fixed this time.
For a particular non-zero entry i = 1j, say, in A|x:c, 0<j<2m* 1 as¢
varies over 1 < £ < n — 1, this element makes a non-zero product with elements
of A*| __ only when aligned with any of the remaining 2m=k _ j _ 1 non-zero
entries, i.e. when ij4+f=i;, j < j' < 2m—k _1. Summing over all such j (i.e. sum-
ming over all 7 for which the elements are non-zero) gives the number of non-zero
products involved in the auto-correlation of A‘x:c’ for a particular ¢ and over
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all non-zero shifts, as Z?:ak_l(y"_k —j—1) = Z?Z&k_l j =2m-k=l(gm=k_1),
This is the same number as that for the compressed vector, and since the prod-
ucts in both the compressed and restricted auto-correlations involve just the
same non-zero elements of A, they are the same products. Thus all the non-
zero products that appear at a particular shift 7 in the auto-correlation of A|x:c
appear somewhere, at possibly different shifts £, in the auto-correlation of A |x:c,
and vice-versa.

Consideration of a simple case shows that products from several shifts 7 of
the auto-correlation of the restricted vector may appear in a single shift £ of the
auto-correlation of the compressed vector. For example take m = 4, x = 29 and
¢ = 0. Take an unrestricted vector

A = (AO,A]_’ aea ,A15)’

where each A; is by definition non-zero, with the restricted and compressed
vectors
A—|$2:0 = (A()a Ala A27 A3a 0,0,0,0, A81 A9a AIO’ A117 0,0,0, 0)

K|I2:0 = (A07 A17 A27 A37 A87 A97 AlOa All)-
Then we have, say

A(A|$2:0)(1) = AgA] + A A5 + Ap A3 + AgAg + Ag ATy + Ao ATy
A(A], _o)(5) = A3 A3
A(;‘:| )(1) = AgAT + A1 A5 + Ay A3 + AgAg + AgAg + Ag ATy + Ajp ATy,

x0=0

and so
AA|, _)1) = A(A[,_)(1) + A(A], _)(5).

As the number of restricting variables increases the pattern of non-zeroes in the
restricted vector may become more complicated, and it becomes less obvious that
if one or more products from shift 7 of the restricted auto-correlation appear at
shift £ in the compressed auto-correlation, then they all will. This is in fact the
case, and the following Lemma gives the precise relationship.

Lemma 5.1. Let A be a length 2™ complez-valued vector, and let x be some
particular k restricting variables, 1 < k < m, and ¢ a binary word of length k.
Then the auto-correlation function of the compressed vector of A at any given
shift is the sum of 2% shifts of the auto-correlation function of the restricted
vector, i.e.

AR _ )0 = AWM _)(m), o<egoam Tt

’TEIg,x

where Iy is an index set of size 2k dependent on £ and x.

Proof. We first show that if any of the non-zero products at shift 7 of the auto-
correlation of a restricted vector appear at some shift £ of the auto-correlation of
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the compressed vector, then they all do. As usual let the k restricting variables
be x =z x;, ---xj,_,, where
J = {jo,j1,--- Jk-1}

is the set of restricting indices with 0 < jo < 71 < -+ < jJk—1 < m — 1, and let
C = ¢gcy - - ¢k—1 be a binary word of length k. Following Section 1.9.5, let set S
be the indices of the non-restricting variables, labelled s, « = 0,1,...,m—k—1,
with0<sp<s1< - <8pg1<Mm—1, ie.
S={0,1,...,m—1}\J
= {507 8154, Sm—k—l}-

Then the non-zero components of A|x:c are indexed by (equation (1.9)):

k-1 m—k—1
7= E o2l + E i5,2°%, 15, =0o0r1,
a=0 a=0

and so the binary expansion of 7 is

1 = | =Ja €J
i = (40,91, ..,4m—1) where < 7 Ca ] Ja
ij=00rl j=s,€S8.

Let the components of K‘x:c be 21\;, ie.
A\Z = (:&‘x:c)? = (A‘x:c) A

where

from equation (1.10), and so the binary expansion of 7 is (Bs50rTs1se--2ls,_pq)-
Suppose that u,u’,v and v’ are the indices of four non-zero components in the
restricted vector, such that the products 4,47, and A,A;, are both non-zero
and appear at shift 7 > 0 in the auto-correlation of the restricted vector, i.e.
that ' —u = v’ —v = 7. Then we need to show that the corresponding products
A\a;l\;%, and ’ZE’Z{%’ both appear at the same shift £, say, in the auto-correlation
of the compressed vector i.e. that ' —u =7" — v = £. (So we have

m—k—1
u= E us, 2%,
a=0

which has binary expansion (U, U1,...,Up—k—1) = (UsgsUsyy---,Us,,_,_,), and
similarly for @', v and v'.)

Let the binary expansion of 7 be (19,71, ...,Tm—1). From the arithmetic of
the subtraction of two binary numbers, the bits of 7 are given by

!
Ta = Uy — Ug + 002 — Ap—1, a=01,...,m—1,
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where u!, and u, are the bits of u' and u, and the a, € {0,1} represent any
necessary ‘borrow’ and ‘payback’ at each stage: if the difference between the u
bits minus any payback from the previous stage, ul, — uq — Gq—1, is negative,
then we borrow 2 from the next stage by setting a, = 1, i.e. a,2 = 2, and add
this in. The 7, and a, may be determined recursively, working from the least
significant bit to the most significant bit, as

a1 =

To = U — Uy — Aq—1 mod 2 (5.5)

Ao = (Ta — (up, — g — aa,l))/2,

for « = 0,1,...,m — 1, and since we have that u' > u, there will be no borrow
at the top, i.e. a,,—1 must be zero. Since u and u' are defined by the bits of u
and v’ at the positions given by the s,, we are particularly interested in the bits
of 7 in these positions. Suppose that at some particular £, 0 <t < m — 1, we
have s; = s;_1 + 1, and define s_; = —1 so this includes the case sy = 0. Then
as,—1 = as,_,, and so bit 7, is given by

Ts, = — Ug, — Gg,—1 mod 2

,
;t — Ug, — Qs,_, mod 2
_ ) (5.6)
Qs = (Tst - (ust — Usy — a’St—l))/2

= (TSt - (“{et — Usy — aSt—l))/z'

Now suppose that s; > s;—1 +1 (and again define s_; = —1, so this includes the
case sg > 0). At any particular index between s; 1 and s; both bits of u and v/’
equal some bit ¢,, and so for i =1,2,...,5 — s;_1 — 1 we have

!

Ug, 14i — Usi_1+i = 0

and so

Tsp—1+i = Gsp_1+i—1,
Asy_14i = (Tst—1+i + aSt—1+i—1)/2
= (aSt—H—i—l + ast—1+i—1)/2
Qsy_1+4+i—1,
and in particular
Qs 4 (sp—sp—1—1) — Asy—1 = Qsy_y,

and so bit 7, is once again given by equations (5.6) above. Thus, whether s; is
consecutive or non-consecutive to s¢_1, in either case the bits 7, are given by

S_1—= —1,0,_1 =0

Toq = u;a — Ug, — as,_, mod 2 (5.7)

Uso = (Tsa - (’U,;a —Usq — asa—l))/27

fora=0,1,...,m—k— 1.
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Now equations equivalent to (5.5) can be used to determine the bits
(60,£1, . agm—k—l) of . =u'— ﬂ, viz:

b_1

g @

 — Uy —bg-1 mod 2

by — (W, — T — ba—1))/2,

for « = 0,1,...,m — k — 1, now with b, as the borrow bits. Substituting
A, A~

—
Ug — Uq = Ug, — Us,, these become

Lo
ba

I
—~

b_1=0
by = u;a — Ug, —bg—1 mod 2

bo = (ea - (ulsa — Us, — ba—l))/2a

but clearly these are exactly equations (5.7) above, i.e.

by =Ts,
bo = as,,
fora=0,1,...,m—k—1, or in other words, the bits of &’ —u at positions « are

precisely the bits at positions s, in ' — u. Since the same relationship holds for
v'—vand v —v, and ' —u = v' —v = 7, then we must have 0’ —u =0"'—v = ¢,
as was to be shown (but note that even though v’ —u = v' —v, and so the binary
digits are exactly the same, the borrow bits in both subtractions may be quite
different!).

Thus, for any given £, the auto-correlation of the restricted vector at shift 7
appears at shift £ of the compressed auto-correlation if the bits at positions s,
of 7 agree with the bits at positions « in £. Since the s, are the complement
of J in {0,1,...,m — 1}, they clearly only depend on x, and there are m — k
of them. Thus there are 2% choices for the non-s, bits in 7, and as the s, bits
depend on £, we may write

ARA_JO =" AWM _)(n), o<eg2amF—1,
TEI[,X

where the index set I; depends on ¢ and x, and is of size 2¥, and hence the
lemma is proved. O

Note that whilst the lemma says that any shift of the auto-correlation of
the compressed vector is the sum of 2 shifts of the auto-correlation of the
restricted vector, the number of shifts of the restricted auto-correlation that
actually contribute to the compressed auto-correlation may be less than 2%,
since the zeroes in the restricted vector mean that it is entirely possible for some
shifts of the restricted auto-correlation to be simply zero.

Using the result of the Lemma, i.e. the fact that the auto-correlation of a
compressed vector may be written in terms of a sum of auto-correlations (at a
number of shifts) of the restricted vector, the following simple corollary shows
that if a set of restricted vectors (under the same restriction) is a complementary
set, then so is the set of the compressed vectors.
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Corollary 5.2. Let {fo, f1,---,fn_1} be a set of N generalized Boolean func-
tions in m variables over Zg, with corresponding vectors Fj, j =0,1,...,N — 1.
Let x be some particular k restricting variables, 1 < k < m. Then if the sum
of the (non-zero shift) auto-correlations of all the restricted vectors across all
restrictions is zero,

Z(A(F0|x:c)(7) + A(F1|xzc)(7) +--+ A(FN_1|x:c)(T)) =0,

[

0<7<2m—1,

then so is the sum of the auto-correlations of the compressed vectors, i.e.

S (AF|, _)(@) + AF|,_ )0 + -+ AFn_a|,_ ) () =0,

[

0<eg2mr 1
Proof. From the Lemma, for any given ¢ and for all j we have

AR )0 = > A®|_ (1), 0<e<2mF o1,
TEI[,X

for some index set Iy x dependent on £ and x. In particular we note that there
is no dependence of the index set on ¢, i.e. the same I, will apply for all
possible ¢. Thus after summing over 7 and ¢ we may interchange the order of
the summation, to get

N-1 N-1
DD AFL IO =323 > AF|_ )
c j=0

c j=0 TEI[,x

N-1
= 2 2D AWM I,
j=0

’TEIl,x c

and since the inner sum of this last expression is zero by hypothesis, we have

N-1 R
SO AF )@ =0, 0<eg2mF -1,
j=0

C

as was to be shown. O

5.3 Complementary Sets from a Pair

In this Section we show that the compressed vectors, across all restrictions,
for any restriction performed on a Golay complementary pair constructed from
Corollary 1.25, form a complementary set. In order to achieve this, we first need
the cross-correlations in the expansion of the auto-correlations, equation (5.4),
to disappear. The following theorem shows when two pairs of functions, based
around the path structure of the construction for complementary pairs, have
cross-correlations that indeed sum to zero. Basically it says that if a function,
after restriction, consists of a path and a function (of any order) not involving
the path variables, then the cross-correlations of
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- the function with the function plus an end point, and
- the function plus the other end point with the function plus both end
points

sum to zero. The proof once again relies on the useful properties that path
functions have, particularly with respect to reversing them.

Theorem 5.3. Let the m variables xg,...,x,_1 be partitioned into three sets
I=A{xiy,...,zi, ,} where 0 <ip <iy1---<ig_3 <m-—1
J={zjy,...,xj_,} where 0 < jo <ji-++ <j1 <m—1
K ={zo,...,z;m1}\ (T UJ),

where s > 1 and the size of the set K is m — s —t. Let m be a permutation of

{0,1,...,s =1}, and let P = P(z;,,..., i, ,) be a path on the s variables in I,

viz:

5—2
q
p=13 D TiryBinany 5 > 2
a=0

PTiy, P E ZLq s=1.

Let Gi = Gi(zjy,...,zj,_,) and Go = Ga(zjy,---,zj, ;) be two generalized
Boolean functions in the t variables in J (and so distinct from those in I),
and let L = L(z4y,...,T;, ;) be any linear function also in the variables in I,
namely

s—1

L= ginTi,, Gin € Zq
a=0

Denote the end points of P by zq = mi o and zp = i ,_,,, and let f, fa, fo
and fqp be four generalized Boolean functions in the m wvariables xg, ..., ZTm—1,
which after restriction on the variables x in K, are defined by

flee=P+L+Gi+q

fa,|x:d:P+g.’L'a+L+G2+92

hl . =P+ gmb+L+G1+g1
fab|x:d =P+ g(xa"‘xb) +L+G2 + 92,

where g1 and g2 are arbitrary elements of Zg, and ¢ and d are binary words of
length m — s — t.
Then

C(F|x:c’ Fa|x:d)(e) + C(Fb‘x:c’ Fab|x:d)(e) =0,
—2"-1) <2 -1
Proof. Perform a further restriction over all the variables which are not in the

path, i.e. over all variables in set J. So put x' = zj,z;, ---z;,_,, and expand
both cross-correlations in the hypothesis using Lemma 1.15 to obtain, for any #,

Z Z (C(F|xx’:cc1 ’ Fa |xx’:dc2)(e) + C(Fb |xx’:cc1 ’ Fab |xx’:dc2)(£)) :

C1 C2
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Using Lemma 1.20, in terms of the truncated vectors this sum becomes,

Z Z(C([F|xx’:cc1]’ [Fa|xx':ch])(£ - (u2 - ul))
+ C([Fb| e, )s [Fab | e, N (€ — (2 — 1)), (5.8)

for (ug —u1) — (nx — 1) < £ < (u2 — u1) + (nx — 1), where u; is the index of
the first non-zero entry in the vector (-)‘xx,:cq, ug that in (-)‘xx,: de, and nx
the length of the pattern of non-zeroes in either such vector, and outside of this
range each cross-correlation is zero by the lemma, so the sum is zero too. From
the standard results on cross-correlation functions, Theorem 1.1, we get, for any
E’

C(B%,A7)(6) = C(A, B)(0),

so we can manipulate the second cross-correlation term to get
C([Fb‘xx':ccl]’ [Fab|xx’:dc2])(e - (’U,2 - ’11,1))

= C([Fab|xx’:dCQ]*’ [Fb|xx’:cc1]*)(e - (u2 - ul))
— (il ae, b [P e D — (a2 — ),

where we recall from Section 1.9.4 that ﬁ‘x:c is vector F|x:C with its non-zero

entries reversed, the values of which are given by f |x:c, obtained by reversing
f ‘x:c in algebraic normal form, and that the conjugation in the vector is effected
by negating the function.

To this end we now consider the forms the four functions take when the restrict-
ing variables are replaced by their respective constants. P and L are not affected
by the further restriction x’, but G; and G5 boil down to a residual constant
that depends on the restricting constant, ¢; or ¢z, denoted by r¢,(-), i = 1,2:

=P+ L+rg(c1)+a1

f‘xx’:ccl
q
fa|xx’:dc2 =P+ Exa + L+ rg,(c2) + g2
q
Folt—ee, = P+ 2%+ L+7a(c1) + g1
q
fab|xx/:dc2 =P+ 5(% +2p) + L +7g,(c2) + g2
We now consider — fab‘xx’: de and — fb‘xx,:cq, which determine the values of
the vectors in the above cross-correlation. The reverse of a path P when P is a
non-trivial path, i.e. s > 2, is given by Lemma 1.9, and negating gives
-5 q
-P=—(P+ 5(% + xp) +1p)
= P+ J(za+ ) + 1y,

since all the coefficients are 2 = —% mod ¢, g even, and where r, = (s — 1)

mod g. From Section 1.6, the reverse of a linear function is the sum of the
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coeflicients minus the function, thus

Similarly —% 4 + x4, and likewise for . Then we get

I q q
~fabxw—ae, = P 5 (@a+36) + 19+ 5 (%0 + 3) + L+ 11 — 165 (c2) — 9
:P+rp+L+TL _TGQ(C2) — g2

= f‘xx’:ccl —Ter (cl) —g1+Trp+TL— T'G2(C2) — g9

= f‘xx’:ccl +7
— 5] — P+ 3@t a) 4+ I+ L Lt —ro(er) -
blxx=ce; 2 Tg T Th Tp 2.Tb 2 T —Ta (C1 g1
q q
=P+§.’L‘a+’f‘p+§+L+TL—TG1(Cl)—91

q
= fa|xx/:dc2 —Tgy(C2) — g2 +1p + 2 +r—re(c1) — g1

q
= f”|xx’:dc2 + v+ 55

where v = r, —7g,(c1) — g1 +7L —Tg,(€2) — g2 is an element of Z,. Thus putting
' =1L — (ug —uq), for fixed ¢; and ca, the inner term in the sum (5.8) becomes

[F\xx,_ccl [Fao—ae, V) + CUF| oo, s [Fab o _ge, N )
C(IF o —ce, s [Fal g, ()
+ (i 0 —dey ) [ e, ) ()
CUF| e, ) [Fa i —ae, ) @)
+ CWF| e ) @2 [Fa o _ge,) () Dy above
C([F s —ce, )+ [Fal oo —ae, ) (¢)
+ 6 EO([F| e, ) [Fal
= C([F| _e, b [F a\xx _ae,)(@)
— C([F| ]
:0,

(A by Theorem 1.8

xx'= dc
xx'=ce; !’ [ a‘xx’ dcy )( )

for —(nx —1) < ¢ < (nx —1), and so by the previous comments, the sum is zero
for all 4.

In the case of s =1 and P = pz;, is a trivial path, we have that z, = =} = z;,,
so we get

—-P=—-p(1—z,)=P—p,
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and then the negated reverse of the restricted forms of f, and f,; are

~fablyxi—de, = P =P+ L+1s —16,(c2) — 9o
= f|xx’:cc1 +7

q q
_fb‘xx’:ccl = P_p+ Exa + 5 +L+re _Tcl(cl) — g1

q
= fa‘xx':dCQ +r+ 5’

where now v =r, —p—rg,(c1) — g1 — g, (C2) — g2, and the rest of the argument
above follows exactly.

Thus in either case the expanded sum of the cross-correlations is zero, and
S0 in turn the original sum is too, i.e. we have

C(F|x:c’ Fa|x:d)(£) + C(Fb‘x:c’ Fab|x:d)(€) =0,
for all £, and in particular for —(2™ — 1) < £ < 2™ — 1, as was to be shown. O

The following theorem is the main result of this chapter. It says that if we
take a complementary pair emanating from the construction of Corollary 1.25,
then the set of all compressed vectors, from all restrictions for any choice of
the restricting variables x, is in fact a complementary set. The effect of the
restriction is to cut the original path from the construction into a number of
shorter ‘path segments’, and it is these that the proof is based around.

Theorem 5.4. Let f and f,, two generalized Boolean functions over Zgq in the

m > 2 variables zg,...,Tm_1, be a Golay complementary pair as constructed by
Corollary 1.25, i.e.

f=P+L
fa=P+laa+1L,

where:
m—2
P=23 Y Tn()Tr(a+)
a=0
is a path in the m variables for some permutation m of {0,1,...,m — 1}; x4 is

either of the end points of the path, To = Tr(0) OT Tr(m—1); and L is any affine
function

m—1
L= Z 9n(@)Zx(i) t 95 Gn(i)» 9 € Lqg-
i=0

So, by the corollary, the corresponding vectors of f and f, form a Golay com-
plementary pair, i.e.

A(F)(0) + A(F)(£) =0, 1<L<2m—1.

Letx=xzj,--xj, ,,0< 50 <j1<--<Jgp1<m—1besomek > 1 restricting
variables, and let ¢ = ¢cocy -+ - cx—1 be a binary word of length k. Then the set of
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2K+ compressed vectors formed by compressing the restricted vectors of both f

and fq over all ¢ form a complementary set, i.e.

Z(A(f“x:c)(g) + A(ﬁa|x:c)(£)) =0, 1</¢K gm—k _ 1

C

Proof. Without loss of generality, let the path end point z, be z (g (due to the
symmetric nature of the path, the following argument is easily modified for the
case when z, is chosen to be the other end point of the path, xﬂ(m_l)). First we
use induction on the number of restricting variables to show that the restricted
vectors form a complementary set, i.e.

ST (A®],_) () + A(Fa|,_)(0) =0,

Cc

for [ # 0, and then we invoke Corollary 5.2 to show that the compressed vectors
are also a complementary set. For the induction we increase the number of
restricting variables being considered, for ¢ = 1,2,...,k, and at each stage
expand the sum of the auto-correlations using Corollary 1.16, and then show that
the sum of the cross-correlations is zero. We start from the restricting variable
which is furthest from z, () along the path, and then work back down the path
toward z,(). Thus re-label the restricting variables to be z,(g,),1 = 1,2,...,k
where m — 12> 81 > B2 > --- > B > 0. So for the base case of the induction,
t =1, we restrict on z,(g,) and expand

A(F)() + A(F,)(€) =0, £#0,

using Corollary 1.16 to get, for £ # 0,

STAF|, O +AF,_ @)

c
+ Z (C(F|$ﬂ(51)zcl ’ F‘wﬂ(ﬁl):CZ)(e)

c17#c2

+ C(Fa‘ a‘ )(@) =0. (5.9)

Trg=c1’ " Hergy=co

Substitute z,(5,) = ¢ in f to see the general form of the restriction:

q
f‘ww(ﬂl):c =P+ i(cmf(ﬂlfl) + Cxﬂ(ﬁﬁ-l)) +L+F' + C9r(p1) (5.10)
where
q B1—2
P'=2 ) Tr)n(a+)
a=0
B1—1
L'= Z Ir(i)Ln(i) T 9
=0
q m—2 m—1
F' = 2 Zr(a)Zr(atl) T Z 9 (i) Tr(i)-

a=p1+1 i=F1+1
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So here: P’ is that part of path P from Tr(0) $0 Tr(p,—1), and so is a path is in
its own right; L’ contains only those linear terms in the same variables as the
path P’; and F' consists of the remaining linear terms and the rest of path P

above (g, 11)- The function f“|ww(gl):c is similar, only with the addition of the

324 = 2, (0) term.
To complete the base case of the induction, three cases are now considered:
(i) the restricting variable is somewhere between the second point in the path
and the other end, i.e. 2 << B <m —1,

(ii) the restricting variable is next to the end point (), i.e. f1 = 1,
(iii) the restricting variable is the path end point z (), i.e. f1 = 0 (in which
case this is the only restricting variable contained in x).
Base case (i)

This is the most general case, when the restricting variable is somewhere between
the second point of the path and the other end point, i.e. 2 < 81 < m — 1. Put
¢ =0 and 1 in turn into equation (5.10) to get:

/ ! !
f|zw(a1>=0 =P+ L+ F
| = P+ L(app 1y + 2agprgn)) + I+ F 4
Trp)=1 o \Im(B1—1) T Tr(B1+1) 9r(B1)
ot ; r , 94
g q
‘Mwmﬂ:P+§%%ﬁﬁﬂwﬁm+ﬂ+ﬁ+%%ﬁ5%m

Re-group the end points of path P’, Tr(0) and Zr(g,_1), to be with the path to
get

loppy0 = P/ L+ F
f‘w,,wl):l - (Pl + gmﬂ(ﬂrl)> + L'+ F' + 258, 41) + 9n(81)
fala 0 = (P + gxw(0)> + L+ F
f“|$7r(51>=1 - (PI + gmf@ + g%(ﬂrn) + L'+ F' 4 2r(p,11) + 9n(1),

from which it can be seen these functions satisfy the conditions of Theorem 5.3,
and so we get, for ¢; # ¢ and for all /,

C(F| )(£) + C(Fq|
Therefore
Z (C(F‘ww(ﬁl)zcl,F‘ww(ﬁl):@)(e) + C(Fa|$7r(ﬂ1)zcl,Fa‘xw(ﬂl):”)(e)) =9
c17£ca
for all £, and thus (5.9) becomes

D (AF[, O +AF, _)@) =0, ££0,

c

)(6) = 0.

ol

F
Tr(py)=C1’ |$w<ﬂ1)=c2 Trg=c1’ " Hergy=co

as we required.
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Base case (ii)

The restricting variable is next to the end point z (), i.e. f1 = 1. Substituting
¢=0or 1 in turn into equation (5.10), now for z(g,) = (1) gives

. !
f|1}ﬂ.(1):0 - L + F

q
Flap o1 = 5@ + Zn(2) + L'+ F' + gx(1)
q
fal gy o = I'+ F' 4 S2nq0)
q
falo, o1 = 5% + L'+ F' + grr),

where now we note that the path P’ is null, and L' is just 9n(0)%x(0) +9- View-
ing 4,0y as a trivial path, both of whose end points are also %z (), and by
introducing 0 = %377r(0) + %ww(o) at appropriate points, we can again group the
terms so as to satisfy Theorem 5.3, as indicated:

f|zw(1):0 - (gx”(o) + %x”(0)> +L+ F

2 ~ - A

P+ {aa’ Gy’

7l —(gw )+L’+F’+9x +

rry=1 — \3%r(0) 5 m(2) Tr(1)
S—— S——
(P! 4G11

(49 q q ! /
fal gm0 = (gfb‘wm) +5%r0) + gwww)) +L+ F
‘P+ g(ma +xp)’ ‘G’

q
leyimr = (5200 + 32 <0>) L+ F' o S0n) 40000

~ ‘—/—/
‘P+ Lay ‘Gy’

Thus we have, for ¢1 # co, that
C(F|
for all £, and with 81 = 1, as in Base case (i), this again gives

SAF], )0 +AF,  _)O) =0, ££0.

C

)(0) + C(Fa

T =c ’F‘ = ‘ = ’Fa| =
m(1)=C1 Tr(1)=C2 Tr(1)=C1 Tr(1)=C2

Base case (iii)

The restricting variable is the path end point, s0 ;(5,) = Tx(0). Put ¢ =0 and
1 in expression (5.10) with z(s,) = () to get the four restricted functions:

_ !
f‘wﬂ(o):() =F
o, 9
Flapeymt = F'+ 5%x() + 9x(0)
_ !
fa|$ﬂ7r(0):0 -
_ g, 4 q
fa|$7r(0):1 =F + 5 %m(1) + Gr(0) T 2
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where now both P’ and L' are null. Thus for fixed ¢; # co, the only differ-
ence between the pairings of the restricted functions f| f ‘x and

Tr(0)=C1 w(0)=C2
fa|w (0):c1’fa‘z 0=c2 is the ‘-4’ appearing on just one of the latter two func-
tions. Then from Theorem 1.8 we get

C(Fa‘%m):ﬂl’ a‘mr(O):CZ)w) - _C(F‘In(o):m’ ‘Iw(o):@)(e)’
giving
Z (C(F‘ww(o):cﬂF|zw(o>262)(e) T C(F“|zw(o):m’F“'Iw(o):@)(e)) =0,
c1#£c2

for all £. Therefore, with 51 = 0, (5.9) once again becomes
;(A(F‘MAFC) 0+ A(F“|$w<31)=c)(£)) =0, £#0,
thus completing the base case for the induction.
Now we assume, by the inductive hypothesis, that
D (AF[_)(0) + A(Fal,_)() =0, £#0,

where X = Z(g,) """ Tr(g,_,) consists of ¢ — 1 restricting variables, and examine
the case of ¢ restricting variables. Again we use Corollary 1.16 to expand this
by the ¢** restricting variable, z,g,), to get, for £ # 0,

Z (Z (A(F|xx,r(ﬂt):cc’) (E) + A(F‘l |xx,r(ﬂt):cc’) (E))

Cc c!
+ Z (C(F|xm,r(ﬂt):cc’1 ’ F‘xa:,r(ﬁt):cc;)(g)

¢ #c
+ C(Fa‘xww(ﬂt):cc'l’Fa“xz,r(gt):cc’z)(e))) = 0. (5'11)

The aim is once again to show that the cross-correlation term is always zero.
Represent the restricted function f | by

XZr(8y)=c¢’

q q
=P+ Eclxﬂ(ﬂt—l) + (§clm7f(/3t+1)) ‘x:c + L'+ Fe+ Clgﬂ(ﬁt)
(5.12)

‘xmw(ﬂt):cc’

where

Bt—2
P'= 23 Cr@aary
a=0
Bt—1
L= Z In(@)Tr(i) + 9
=0

m—2 m—1

Fo= (5 Y @iy 2. 9n0) +9) hee
a=f+1 i=p+1
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So here: similar to before, P’ and L' are those parts of P and L up to 8; —1, and
thus are unaffected by the restriction; those parts of P and L above B; + 1 are
placed in F., but since they may be subjected to the restriction, this is shown,
and the subscript ¢ is appended; the variable z g, 1) could also be part of the

restriction, so this is shown in the term (%Clﬂﬂw(ﬂtﬂ) ‘x:c.
There are three cases again, basically as before, but now relative to the previous
restricted variable z,(g,_,) rather than the end point z(y,_1):

(i) the new restricting variable is somewhere between the second point in the
path and the ‘lowest’ previously restricted variable, i.e. 2 < 8 < i1,

(ii) the new restricting variable is next to the end point T, 1-€. B =1,
(iii) the new restricting variable is the path end point z, (), i.e. 8 = 0 (and
thus is the last restricting variable).
Case (i)

This is the most general case again, where the new restricting variable is some-
where between the second point of the path and the lowest previously restricted
variable (zr(g,_,)), i.e. 2 < By < By_1. Substitute ¢’ = 0 and 1 into equation
5.12 to get

_ pt ! '
‘xzw(gt):co =P+ L+ Fc
q q ! !
f‘xzw(ﬁt):(::[ =P+ §$w(ﬂhl) + (ﬁmr(ﬂﬁ—l)) ‘x:c + L+ F.+ 9r(Bt)
/ / v 4
fa‘xzr(ﬂt):co = P+ L'+ Fl+ San)

o, 94 q
fa‘xz,r(ﬂt):cl =P+ §x7r(ﬂt*1) + (Ex"r(ﬂﬁ‘l)) ‘x:c

q
+ L'+ e+ gn(pr) + 5%n(0)-

As before, group the ends of the path P’, Tr(0) and Tr(g,—1), with the path to
get

=P +L'+F.

‘Xmﬂ.(gt)zco

q q
f‘xzr(ﬂt):‘ﬂ = (PI + §‘Tﬂ(ﬂt—1)) +L+ Fé + <§$W(ﬂt+1)) ‘x:c + 9r(8,)

94 ! '
f“|xm7r(ﬂt>:<10 - (P + 5:5”(0)) +L+F
_ y 4 q
'fa|xm.,r(5t):c1 - (P + §$7T(0) + §$W(ﬂt—1))

q
+ L+ Ft (R2001)) Ly + 9500

from which it can be seen these functions again satisfy the conditions of Theorem
5.3, and so we get, for fixed ¢ and ¢| # ¢, and for all £,
)(£) + C(F,|

( |xz,r(ﬁt):cc’1 ’ F|xm,r(6t):cc’2 xac,r(ﬁt):cc’l’Fa‘xzﬂ.(ﬂt):cc'z)(e) =0.
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Therefore

Z Z (C(F‘x;c,,(ﬁt):cc’l’F|xzr(5t):cc’2)(e)

¢ e

+OF, ‘xwwwn:w’l e ‘an(m:cca

for all £, and thus (5.11) becomes

Z Z(A(F‘xa;,r(ﬂt):cc’)(g) + A(Fa|xx,r(5t):cc’)(£)) = 0’ ¢ 7é 0.

So if we subsume zg,) into x, so that it now represents the ¢ restricting variables
Tr(8,) """ Tr(s,)> and likewise put ¢’ into c, we get

ST(A®]_)O) + AFa|,_)(0) =0, £#0,

c

as required.

Case (ii)

The new restricting variable is next to the end point z,(), i.e. St = 1. Substi-
tuting ¢ = 0 or 1 in turn into equation (5.12), now for x,(g,) = T(1) gives

_ ! !
f‘xwﬂ(l):co - L + FC
— q q | LI FI
‘xww(l)ZCI - 53:71-(0) + 53:71-(2) X=c + + [ + gﬂ'(l)
_ 7! r 4
fa|xx,,(1):c0 =L +F.+ §w7r(0)
q ! !
fa|xx7r(1):(31 = (ixw(z)) |x:c + L'+ Fc + gw(l)-

where again we note that the path P’ is null, and L’ is just 9r(0)Zr(0) +9g- As
in the base case, viewing %xw(o) as a trivial path, both of whose end points are
also 2z (g), and by introducing 0 = £,y + {x.(o) at appropriate points, we
can group the terms so as to satisfy Theorem 5.3, as indicated:

q q ! !
f|xzﬂ(1):c0 = (5.’1371-(0) + 533”(0)) +L' + F,
N ~ ) \
‘P—|— %Ea’ ‘GQ’
f = (2 v+ F 4 (2 i
|xa:,,(1):c1 - 2.’1,'71.(0) c 2‘T7T(2) x=c T9r(1)
— ~ ~- -
‘P ‘Gy?
q g q ! !
fa‘xa;ﬂ.(l):co = (53"71'(0) + 51‘71'(0) + 51'71-(0)) +L + Fc
N ~ ,
‘P + §(2a + @)’ ‘Go’
= q q LI FI q +
Jolsyay=et = (5700 + 57n(0) ) TL'+ Fe b (57n(2) ) e H0m0)-

~”

~
‘P+ Lxy’ ‘G’
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Thus we have, for fixed ¢ and ¢| # ¢, and for all £,

0)+ C(F, 0 =0,

(F|xwﬂ.(1):cc’1 ’ F|xwﬂ.(1):cc’2)( ‘xw,r(l):cc'l Fa XTr(1)=CCh )( )

and with ; = 1, as in Case (i), this again gives

Z Z(A(F‘xw,r(gt):cc’)(e) + A(Fa‘xw,r(gt):cc’)(e))
= 2 AFELIO + AFal)(0)

:m £40.

Case (iii)
The new restricting variable is the path end point, so z(g,) = Z(0)- Put d=0

and 1 and z,(g,) = Tr(g) into expression (5.12) to get

_ !
f‘x:c,,(g):co - FC

q
f‘xwﬂ(o):cl - Fc, + (Exw(l)) |x:c + 9x(0)
fal F!

XZ 7 (0)=c0 — e

o q q
fa|xw,,(0):c1 o FC + (ixw(l)) |x:c + ) + 5’

where again both P’ and L' are null. Thus for fixed ¢| # ¢}, the only dif-
ference between the pairings of the restricted functions f |

and fa|x;c (0):cc’1’fa‘xw,r( 0)=Cccy
functions. Then from Theorem 1.8 we get, for all £,

— J | — /
XZTr(0)=ccy’ f XZTr(0) =CCh

, is the ¢ + ’ appearing on just one of the latter two

C(Fa ‘x:c,r(o):cc’l Fa |x:c,r(0):cc’2)( ) ‘xw,r(o):cc’l F xw,r(o)zcc’z)(e)’

so again the sum of the cross-correlations is zero, and therefore, with g; = 0,
(5.11) once again becomes

Z Z(A(F‘xw,r(gt):cc’)(e) + A(Fa‘xzr(Bt):cc’)(e))
= Z )+ A(Fa|,_)(0)

:m £40.

Thus in each case, if the auto-correlations sum to zero, i.e.
> (AF[,_)(0) + A(Fo|,_)(0) =0, £#0,

when x contains ¢ — 1 variables, then they also sum to zero when x contains ¢
variables, and hence by induction they sum to zero for t = 1,2, ..., k restricting
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variables. Then from Corollary 5.2, since the sum across ¢ of the restricted
vectors is zero, then so also is the sum of the compressed vectors, i.e.

D (AF] )@+ AFa|,_)(®) =0, 1<e<2mF -1,

and the theorem is proved. ]

Since the set identified by the theorem is of size 2511, then all words in the
set have a PMEPR< 2%t1. If we denote the quadratic part of f after restriction

by @, and the compressed version of this as (), then the set of the theorem is

a subset of the coset Q + RM,(1,m — k). This coset of course has a PMEPR
determined by Theorem 1.27, and this will depend on how many deletions are

necessary in order to reduce @ to the longest path segment that remains after
the original restriction. It is quite possible that the PMEPR given by the above
theorem is less than that given by Theorem 1.27, as is illustrated in the following
example.

Example 5.5. Consider the following binary case for m = 11. Let f be
f =zex3 + 3710 + T10T1 + T1T4 + TaT7
+ 2729 + T2 + T9T9 + T9T5 + THTY,

and pick end point z, = xg, so that f and f, = f+z¢ are a Golay complementary
pair. Restrict using the variables x = 2219, and let

Q = zgx3 + T124 + T4X7 + TeT9 + T9T5 + T5Tg

be the quadratic part left following any restriction for the given x. Then vectors
of the eight restricted functions

= Q + C()(.’II() + ZE7) + Cl(.Tl + .’L'3)
= Q + co(To + 77) + c1(z1 + 23) + 6,

f |J,‘2$10:Co(21

fal

co,c1 € {0,1}, form a complementary set. Map the indices using

Z2Z10=C0C1

0—~0,1—1,3—2,4—3,5—4,6—5T+—6,8—79—8,

to get the compressed Q,

~

Q = z572 + T123 + T3T6 + ToTs + TeTs + T4T7,

and the eight compressed functions,

ﬂwnloZCoq = Q + co(mo + T6) + c1(z1 + T2)
fal
co,c1 € {0,1}, the vectors of which also form a complementary set. Each of the

vectors in the set thus has a PMEPR< 221! = 8; from Theorem 1.27, we would

need to delete vertices 1,2,3,5 and 6 from Q, to leave just path zozs+23zs+ 2427,
and so this gives the PMEPR of the coset as being at most 25t! = 64. Thus

the above theorem has identified words in the coset Q + RM(1,9) which have a
considerably lower PMEPR than is generally the case. O

= Q + co(wg + x6) + c1(x1 + T2) + T5,

Z2Z10=C0C1
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5.4 Complementary Sets from a Sequence

The functions in the set specified by Theorem 5.4 in the previous section have
a quadratic part that is a number of disjoint path segments. In Section 3.3 of
Chapter 3 we saw how it was possible, using functions with such path segments,
to construct functions that share the same auto-correlation function, and then in
Section 3.4, by grouping together such functions, how it was possible to split up a
complementary set into smaller complementary subsets. The same idea is used in
this section: it is shown that for particularly choices of restricting variables, the
complementary set generated from a complementary pair in Theorem 5.4 may be
split in two, thus generating a complementary set from a single complementary
sequence.

The following theorem shows that if two restricted functions essentially con-
sist of a number of (the same) disjoint path segments, but the linear terms
representing the end points of the paths are ‘opposite’ to each other, i.e. if the
end point ‘+%z,’ appears in one it doesn’t in the other, then the functions share
the same auto-correlation function. Additionally, any further restriction, which
generally splits one path segment into two new ones, results in functions that
may be paired in exactly the same way.

Theorem 5.6. Let the m indices {0,1,2,...,m — 1} be partitioned into three
sets: the set I, further partitioned into the subsets I, j = 0,1,...,£ — 1, con-
taining indices on which £ paths are to be defined; J containing indices for a
generalized function; and K, the indices of any restricting variables x, viz

-1

I= U Ij where Ij = {ij,o,ij,l,... 77;j,5j—1}a Sj = 2, ] = 0, 1,. .. ,E - 1,
j=0

J:{joajla"'ajt—l}a

K={0,1,....m—1}\ (TUJ),

where

LNl =9 for i # 7,
InJ=o.
Let the size of set I be s = Zﬁ;}) sj, and so the set K is of size m — s —t. Let
the £ bijective functions mj : {0,1,...,s; — 1} — I; define the path segments

§;—2

b=y D Trj(a)Try(at1);

a=0

which have end points x, ) and T, (s;—1). Let F' be a generalized Boolean
function in the variables indezed by J, namely F = F(zj,,zj,...,%j_,), and
let L be a linear function in the same variables as the paths, i.e. whose indices
are taken from I, so L = Y, 1 gixi, 9; € Zq. Let f and g be two generalized
Boolean functions in the m variables xg, . .., Tm,m_1, which after restriction by the
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variables indexed by K are defined as:

-1
f|x:c = Z(P +3 (d T (0) +6J$7rj(s] 1))) +F+L+h
j—O
g‘x c Z(P +3 — d; )‘7:71'](0) + (1 - ej)xﬂ'j(s]-—l))) +F+ L+ h

where dj,e; € {0,1},h1,ho € Zg. Then the restricted functions f|x:c and g‘x:c
have the same auto-correlation function. Further, for each § € {0,1}, the pair
of functions resulting from an additional restriction on any variable indexed in
TuUJ,

f|x:c7:c6 and g|

XTy=cd

where
g=1° veJ
60=1-0 ~ve€el,

have the same form as given above, and thus also share the same auto-correlation
function.

Proof. First we show that the two functions have the same auto-correlation
function. Using the fact that we are working mod ¢ (¢ even), so that —% = £,
and re-grouping the terms we get

{—1 -1
f‘x:c:ZP]-'_F-'_( g(d$ (0)+€] (5_1))+L)+h1
j=0 j=0
-1 q
Il = Z(PJ + 5(3579'(0) T m”j(%“”)) +F
7=0
{—1 q
+ ( E(d Zr;(0) + ele‘ﬂ-j(Sj_l)) -I-L) + ho.
7=0

For each of the £ paths P; in f‘x:c’ the path along with both of its end points,
P; + %(:L‘,Tj(o) + xﬂj(sj_l)), appears in g‘x:c, and thus by applying Corollary 3.5
sequentially to each of these paths we obtain a succession of functions with the
same auto-correlation as f ‘x:C, ending with g‘x:C. Thus the two functions have
the same auto-correlation function.

Next we show that a further restriction where the new restricting variable is
one in F, i.e. whose index is in J, still leads to a similar pairing of two functions
with the same auto-correlation function. Suppose that the new restriction is .,
where v € J, and that ¢ is the equivalent constant. Since J N I; = & for all
7, the index v does not occur in any of the paths, and so on applying the new
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restriction, we simply get

-1

f‘xz,y:c(S = Z(P +5 (d x'”](o) + GJSC,,r]( )) + F‘J,‘,YZJ + L+ hl
j—O
xz7_c5 ji:(f"+ —dj)Tr (0)*‘(1“ej)$nA5f—U))

+F|, _5+L+ha

It is clear that the new restriction could be subsumed into x, and we are left with
expressions of precisely the same type that we started with. Thus by repeating
the first argument given above we have, for v € J, that f ‘x%:cé and g|x$7:c6
have the same auto-correlation function. A special instance of this case is when
z., appears only as a linear term in F, as may occur from a previous invocation of
the theorem which resulted in Cases (ii), (iii) and (iv) below, whereby new linear
terms are introduced. The variable z, is no longer a path variable, i.e. v ¢ I,
and so does belong to F', as in the above expressions, but now the restriction

F‘ becomes
Flo 5= (F'+ gy, s = F' + 956,

where F' does not depend on z,, and the constant g'7 depends on the coefhi-
cients of the terms involving z, from the previous invocation. Thus even though
f ‘xz _s and g| s have the same auto-correlation, since the value of a con-
=
stant added in such a way to a function does not affect the auto-correlation, we
choose to pair them as f| _¢s and g‘ _c5 Where § =1—4 is the 1’s comple-
xzu.y_c X$7—C
ment of §, and these two functions will also have the same auto-correlation. This
maintains the pairing established for the cases below when the new restriction

occurs in one of the paths (which z, once was).

Now we consider a further restriction where the new restricting variable is
one of the path variables, i.e. z., say, where the index v is an element of one
of the sets I;,j =0,1,...,¢ — 1. There are five cases to consider, depending on
the length of the path segment which contains z.,, and whereabouts within the
path it appears. The first is the most general case, where the path is split into
two new ones; the rest are special cases where one or both of the new paths is
null:

(i) the new restriction is more than two vertices in from each end of a path
with four or more edges—this leaves two new shorter paths,

(ii) it is the second vertex in a path of three or more edges—this leaves a
shorter path and new linear terms,

(iii) it is the mid-point of a double-edge path—this introduces just new linear
terms,

(iv) it is the end point of a single-edge path—this also just introduces new
linear terms, and
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(v) it is the end point of a path with two or more edges—this leaves just a
shorter path.

The working for each of the special cases is very similar to that for the gen-
eral case, and therefore is unfortunately somewhat repetitious. However for
simplicity’s sake it seems more appropriate to repeat the working rather than
complicate the general case by trying to make allowance for the special cases
where they arise.

For each of these cases we now pair the new restriction z, = ¢ in one function
with the 1’s complement of the restriction, i.e. z, = (= 1 — §) in the other.
Suppose that v is in Iy, i.e. z, is in path P;. The different cases arise from z.,
being a certain distance from one of the end points of the path Py, and from the
length of the path, si. For convenience we shall work with end z,, (o), but due
to the symmetric nature of a path, the arguments apply equally well should the
other end point, z, ;. _1), be chosen.

Case (i)

This is the most general case: the new restriction is more than two vertices in
from each end of a path. So the path P, has at least four edges, thus s; > 5,
and the index of the new restriction is at least two vertices in from either end
point of the path, i.e. let v = 7 (), where g is such that 2 < 8 < s — 3. The
new restriction causes path Py to be split into two new paths:

-1 B—2
q q
Flass—es = 22 (P + 3 (djrny0) + €3, 6,1) ) + 3 D Try(a)Try(as)

=0 a=0
ik

q g =
+ 5(5$7rk(,3—1) + 0 (g41)) + 3 Z Zr() Ty (at1)

a=pg+1

q
+ 9 (dkwﬂk(o) + ekx"’rk(sk*l)) +F+ L‘z.,:(s +
-1

q
g XTy=cJ - Z(P] + 5((1 - dj)a:ﬁj(o) + (1 - ej)wwj-(sj'—l))>

—
s

¢ =2 q
+5 D Tr@Trarn) + 5 (1= 02m, 51 + (1= 0)Tr,(511)

a=0

g =2 q

ty D Tm@Tmar) o (1= db)no) + (1= e)on(s, 1)
a=p+1

+ F + L|z7:5 + ha.
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Re-group the terms in each expression:
—1
'f|X$’y:C(5 = Z(P +5 (d Z7;(0) ez ”1(51_1)))
T
+ (Plé + %(dkwﬂk(o) + 53:7%(5*1)))

q
N (Pé’ + 2 0Ty p41) + ChTny (5 1) ) T F + L], s+

Ilxz,=cs Z(P +5((1 = dj)zm;0) + (1 = ej)'”ﬁj(sj‘—l)))
J#k
+(P1§ + %((1 — )Ty 0) + (1 — 5)%,6(,371)))

+ (Plg + g((l = 8) Ty (1) + (1 — ek)wﬁk(sk_n))
+F + L|w7:5 + R,

where
¢ =
Pi= 5D Try(0)Pri(at)
a=0
q Sk—2
Pi=3 Y Tme)Tmlat)
a=pg+1

hiy = ho + g (1 —20)
and where we have substituted

L| =L| 5 +9,(1 —20)

Ty=0 Ty=

since

H,oy= Y owtad and I, 5= gt a,(1-0)
el i€l
12y £y

Examination of the expression for f |xm,Y:c s above shows that it consists of: £+1
path segments (path Py has been split into two new paths) in the variables
indexed by I' = I'\ {7}, plus some combination of their end points; the general-
ized Boolean function F' (still in those variables indexed by J); a linear function
L|$7: 5 also in the variables indexed by I ', i.e. the path variables; and some
constant in Zg, hi. The function g|xw7:C3 consists of: the same £ + 1 paths,
but with the opposite end points; the same function F'; the same linear function
L|w7: 5; and some different constant hy. Group the new restriction on z., in with

x and call it x' (i.e. K' = KU{v}), and similarly put ¢ in with ¢ to get ¢/, then
we can regard f‘xw —es 38 [|y_o- For g, put
= -

G20y s Ty ey Tme1) = G(T0s ey 1 — Ty oo, Tyt
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— —

x'=c' — 9 XTy=cd g XTy=c3’ x'=c’

are a pair of functions fitting the conditions of the theorem, and which addition-

ally, by the first argument given in the proof, share the same auto-correlation

function. Thus, for v € I, we have that f| and g|x$ _5 have the same
=

auto-correlation function.

so that ¢’ and thus we see that f |x,:c, and ¢'

XTy=cCd

Case (ii)

The new restriction is the second vertex in a path which has three or more edges.
So take the path P, to have 3 or more edges, thus s; > 4, and take the index
of the new restriction to be the next index from the end point of the path, i.e.
B =1, s0 v = m(1). The new restriction causes the path Py to become a path
with two less edges than it started with, plus new linear terms:

-1

Flaaymes = 2o (Bi + 5 [iny0) + einy-0) ) + 5 (my(o) + 02 )
2
Sp—2
+ % 22 Trp(@) Ty (at+1) T %(dkwm(m + ek, (s,-1))
a=
+F + L| s +h
-1
9z =cs = Z(Pj + g((1 —dj)Tr;0) + (1 - ej)wwj(sj_n))
T
sk 2
5 (1= D)z @) + (1= D)z, ) Z Ty (@) Ty (at1)
+ g((l - dk)xwk(ﬂ) + (1 - ek)ajwk(skfl)) +F+ L|z7:3 + ha.

Re-group terms as:

-1
f|xz7:c6 = Z(Pj + %(djmrj(o) + ejivvr,-(sjq)))
Tk
+ (P,é + %((5.’L'7Tk(2) + ekxﬂk(sk_l))>
+F' 4L, 5+
-1
0,5 = 2 (i + (1= dj)ar0)+ (1 - €)Tx,(5,-1) )
%
+ (P,; + g((l — )y () + (1 — ek)a:mc(sk_l)))
+ F' + L’|zv:5 + hb,
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where now
q Sp—2
Pi=5 D Tnya)Trylot)
a=2

F' = F+ 20+ d)r,0) + 9 (0)Try(0)

Ll|w7:6 = ( Z gixi>|z7:6

el
i#my(0)

hy = ha + g,(1 — 26),

so the linear terms in z,, (), which is no longer a path variable, have been
grouped in with F, and a similar substitution as Case (i) above has been made
for L' =5 Thus in this case we see that f|mw:c 5 consists of: £ paths plus
some combination of end points (path Pj has been shortened); the function F’,
involving variables not in any of the paths; the linear function L' |$7: 5 in the

path variables; and a constant. The function g‘xw _ = consists of: the same £
=

cd
paths, but with the opposite end points; F’ again; the same linear function;
and a different constant. Then making the same notational adjustments as
Case (i), we again see that this pairing of functions satisfies the condition of
the theorem, and thus we again have that f |x%:C 5 and g|xm:cg have the same

auto-correlation function when v € 1.

Case (iii)
The new restriction is the mid-point of a double-edge path. In this case we take
path P; to have just two edges, i.e. s = 3:

q
P = 5 (@n(0) Ty (1) T (1) e (2)):

and the new restriction is the mid-point of the path, i.e. v = m(1). This causes
path Py to cease to exist, reducing it to just linear terms:

-1
q q
Flaymes = 2o (Pi + 5 (im0 + ey 1) ) + 5 (o) + 02 )
L
£k
+ 2 (drry o) + exr,2) + F + L], s+
-1

q
g xz,Y:cS = Z(‘P] + E((]‘ - dj)wﬂj(()) + (1 - ej)$ﬁj($j—1)))
7=0
J#k

+ (1= 8)zry0) + (1 — )2y 2))

+ (1= dp)zr, o)+ (1 — ex)zr,2) + F+ L p5 T 2

NN
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Re-grouping terms:

-1

q
f|xz‘7:c6 = Z(PJ + §(dj$7fj(0) + ejwﬂj(s]‘fl)))
=t
jh
+ F' -l-L’\%:J-l—hl
—1 q
g XT,=c3 = Z(PJ + 5((1 - dj)ivnj(o) + (1 - ej)xﬂ'j(s]-—l)))
=
J#h
+F' + L' _;+h,

Ty

where
q
F'= F + 2 ((6 + )2, 0) + (0 + ) Tny(2) + 90T (0) + Ime(2)Pma2)

LI|$7:6 = ( Z gixi)‘a»,:&

el
i£m(0)
i£m(2)

Ky = ha + g, (1 - 20),

gathering the remaining linear terms of path P, with F', and with the same

substitution for L’ ‘z _5 as before. Here we see that f |xz e consists of: £ —1
Y Y

paths plus some combination of end points (the original paths minus path Py);

the function F’, involving non-path variables; the linear function L’ ‘z _s» In the
=
path variables; and a constant. The function g|mc _ 5 consists of: the same £ —1
=

paths, but with the opposite end points; F' again; the same linear function;
and a different constant. Again, making the same notational adjustments as
Case (i), we see that this pairing of functions also satisfies the condition of the
theorem, and thus they share the same auto-correlation function.

Case (iv)
The new restriction is the end point of a single-edge path. In this case we take

the path Py to have just one edge, i.e. sp = 2:

q
Pk = 5%m(0)Tmy(1)-
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The new restriction is on the end point of the path, i.e. v = 7;(0). Again this
causes path Py to cease to exist, reducing it to just linear terms:

-1

q q
Flaaymes = 2 (Pi + 5 (dir;0) + 1)) + 20%m()
Jj=0

+ %(dké + elc-'Ewk(l)) + F+ L‘x.,:é + hy

-1

q q
g x%:cﬁ = Z(P] + 5((1 - dj)x’ﬁj(()) + (1 - e].)x’irj(sj'*l))> + 5(1 - 6)$Wk(1)
j=0
ik

+5((1 = d)(1 = 8) + (1 = eg)aryn) + F + L, _5+ ha.

NCAIES]

Re-grouping the terms gives

-1

q
f‘xz»,:c& = Z(PJ + E(djxﬂj(()) + ejij(sj-—l)))
j=0
J#k
' ' !
+F +L ‘w7:5+h1
-1

j=0
ik
! ! !
+F +L \%:5 + hb,

where
q
F'=F + 3(0 + er)m, (1) + I (1))
! E
L ‘w7:5 - ( gixi) ‘567:6
1€l
i#m(1)

W, = hy + %dké
= ha+ S(1—di)(1 - 8) + g, (1 — 20),

again gathering the remaining linear term of the path P, with F, and using
the same substitution for L’ |I7_5. This time we have that f |xz —ch consists of:
- =

£ — 1 paths plus some combination of end points (the original paths minus path
Py); the function F' in non-path variables; the linear function L' |$7: 5 in just
the path variables; and a constant. The function g‘x%:cg consists of: the same
£—1 paths, but with the opposite end points; F’ again; the same linear function;
and a different constant. Once more it is seen that this pairing of functions also
satisfies the condition of the theorem, and that they therefore share the same
auto-correlation.
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Case (v)

The new restriction is the end point of a path with two or more edges. In this
last case, the path P has at least two edges, i.e. s > 3, and again the new
restriction is on the end point of the path, i.e. v = m(0). This just shortens
the path Pj:

-1 g% 2
f‘xm,y:cé = Z(P +35 (d Tr;(0) T €jTm;(s;—1) ) Z Trp(a)Tay(at1)
T2k
+ 595”(1) + = (dk(5 + €Ty (s, — 1)) + F + L‘ T hy
1
Ilxzy=cs = Z(P] + g((l - dj)ij(o) +(1- ej)xﬂj(sj_l)))
prt
sp—2
+ g > Try(@) (et + g(l —8)Zr, (1)
a=1
+2(A = di) (1= 8) + (1 = eR)any s, —1) + F + L], _s+ho.

Re-grouping terms:

-1
f‘xx,y:cd = Z(P + 5 (d T7;(0) + ejl‘wj'(s]'—l)))
=0
ik
+ (Pk,:-l_g((sxwk(l) -I'ekwwk(sk—l))) +F+L‘ +h,
-1

g XTy=cd Z(P +35

J#k
+ (P]:) + g((]‘ - 5)$Wk(1) + (1 - ek)xﬂk(skfl)))
+F+ L\%:J + hb,

((1 —dj)Tr0) + (1= J)ﬂﬁn,-(Sj—l)))

N |

where
q Sk72
Pi =5 Y Tn(a)¥m(at)
a=1
1 q
hl - hl + _dk(s
= ho+ 21— di)(1 - 6) + (1~ 20),
and once more the same substitution for L‘ has been made. For this last

_s Consists of: £ paths plus some combination of end

points (path P, has been shortened); the function F'; the linear function is
just L|$ _s» in just the path variables; and a constant. The function g
=

case we have that f|xm
y

X.’L‘»Y:Cg
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consists of: the same ¢ paths, but with the opposite end points; F' again; the
same linear function; and a different constant. This pairing of functions is again
seen to satisfy the condition of the theorem, and so again they share the same
auto-correlation function.

We have shown that a pair of functions satisfying the conditions of the the
theorem do have the same auto-correlation function, and also that (by examining
all the cases) suitably pairing the functions following a further restriction on
any variable results in pairs of functions that still satisfy the conditions of the
theorem, and therefore also have the same auto-correlation function, and thus
the theorem is proved. O

When the restricting variables contain either of the end points of the path,
or a pair of indices which are adjacent in the path, the following theorem shows
that, by pairing up functions with the same auto-correlation function according
to the above theorem, the complementary set from Theorem 5.4 of the previous
section may be halved in size i.e. the compressed vectors formed from just one
of the sequences in the original pairing form a complementary set in their own
right.

Theorem 5.7. Let f be a generalized Boolean function over Zg in the m > 2
variables xg, ..., Tm—1 whose vector is a Golay complementary sequence as con-
structed by Corollary 1.25. That is, f is an element of the coset P+ RMy(1,m)
where P is the path

m—2
P = g Z Tr(a)Tr(a+1)

a=0
for some permutation w of {0,1,...,m — 1}. Let J = {jo,j1,---,Jk—1} be the
set of indices of the k > 1 restricting variables x = xj,xj, ---xj,_,, and let c be
a binary word of length k.
If x contains either end point of the path, or a pair of indices adjacent in the
path, i.e. ©(0) € J, orw(m —1) € J, or n(B) € J and n(f+1) € J for some 3,
0 < B < m—2, then the set of 28 compressed vectors §|x:c’ over all ¢, form a
complementary set, i.e.

STAF|_ )0 =0, 1<e<2mF o1

Proof. Construct a Golay complementary pair according to Corollary 1.25 as

f=P+1L

5.13
fa:P‘i‘g-Ta‘l‘L, ( )

where

m—1
L= Z In(@)Tx(i) t 95 Gn(i)» 9 € Lq
1=0
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is any affine function, P is per the hypothesis, and z, is either of the end points
of the path, i.e. zo, = Zy() Or Ty(p_1). From the proof of Theorem 5.4 we get
that the set, over all ¢, of restricted vectors is a complementary set, i.e.

ST (AF,_)(0) + A(Fa|,_)(®) =0, £#0.

C

We now show that when the restricting variables x satisfy the hypothesis it
is possible to arrange the vectors into pairs sharing the same auto-correlation
function, i.e. to get

AF|,_ )0 = A(Fa|,_,)(0), forall £,

and for some c¢; and cg, which halves both the number of distinct auto-
correlations in the sum and thus also the size of the complementary set. Corol-
lary 5.2 then completes the proof.

First consider the case when either of the path end points is one of the
restricting variables, i.e. w(0) € J or m(m — 1) € J. Put a = 7(0) or n(m — 1),
whichever one is being restricted on. Let the digit in ¢ corresponding to z, be
labelled c,, let x’ be all restricting variables apart from z,, and ¢’ similarly. Thus
by considering the restriction x = ¢ as x'z, = ¢’c,, and actually substituting c,
for z, in f and f,, we get

q
f|x:c = f x'Tq=c'cq - (Eca-rd + Pl + Ll) x'=c’ + GaCq + g
q q
f“|x:c = fa X'Ta=c'cq (icaxd + P+ Ll) x'=c + Yaa + Eca +9
where
Td = Tr(1) )
m—2
P = 2 Lr(a)Tr(a+1)
2~  when a = 7(0),
m—1
L, = Ir(e)Tr(a)
a=1 /
Td = Tr(m—2) )
m—3
P = 2 Tr(a)Tr(a+1)
2=  when a = w(m — 1).
m—2
Ly = In(a)Tr(a)-
a=0 /

Since the only difference between these two functions is the constant Zc,,
by Theorem 1.8 the restricted functions f ‘x:c and fa|x:c have the same auto-
correlation function, i.e. for any given ¢ and for all /,

A(F[,_)(0) = A(Fa,_.)().

Now we consider the case when the restricting variables include a pair which
are adjacent in the path, i.e. for some 3,0 < 8 < m —2, n(f) and n(8 + 1) are
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both restricting indices (so 7(8) € J and w(5 + 1) € J). (We may assume that
m > 4 and 1 < B < m — 3, since otherwise the case above applies.) Suppose
Tq = Zn(0), and take B to be the lowest value possible, i.e. pick the adjacent
pair which are closest to the path end point ) (with minor adjustments the
following argument is also seen to be true when z, is chosen to be T, 1))
There are two cases to consider: first the most general case when 8 > 2, so that
after restriction on z,(gy a non-trivial path is obtained. The case when 8 =1,
which results in a trivial path after restriction, is dealt with below. Let € denote
the 1’s complement of the constant e, i.e. € = 1 — e, and examine the form
of the restriction of f by z;(gZr(s+1) = €€, and fo by Zr(8)Trs4+1) = €€, by
substituting into equations (5.13):

q q q
f|$,,(3)$7r(6+1):es =P+ L + 56'%#(,3*1) + 568 + §€$n(ﬁ+2) + Py + Lo
T 9+ grp)€ + gu(p+1)€
fal =P +L+10—e¢) 91— e)e+ 4 (5.14)
a ww(B)£7r(B+1):€5 - 1 1 + 5 —e€ wﬁ(ﬂ—l) + 5 — €)E + 56‘,‘677(/3‘1‘2)
q
+ Pt Ly + San(0) + 9+ 9u(p) (1 = €) + gn(ar1)es
where

p—2
q
P = E Z Lr(a)Lr(a+1)
a=0

B-1
Ly = Z I () Tr(a)
a=0

q m—2
P2:§ Z Tr(a)Tr(a+1)
a=p+2
m—1
Ly = Z Ir(a)Tr(a)-
a=p+2

Gather together terms in variables indexed by 8 + 2 or greater (as F'), gather
together the constants in each expression, and let d = 0 and introduce the term
3dz ) = 0 into the first expression and write gzr(y as (1 — d)z,(g) in the

second, to get

Il
fal

— q q
(B)Tr(B+1)=€E P+ §d377r(0) + 56.’1:”(/3_1) +F+Li+aq

=P + %(1 — d)'Tw(O) + %(1 — e)xw(ﬁ_l) +F+ L+ g2,

T (8)Tm(B+1) €€

where
F =P+ Lo+ Jewn(ain
g1 = ges + 9+ 9r(p)€ + 9r(p+1)€
g2 = g(l —e)e + g+ gr(p) (1 — €) + gr(p+1)€-
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If we put fi(zo,...,Zx(g), »Tm-1) = fa(Zos---s1 — Tr(g),-..,Tm 1), then
we get f,’1|;lc O Tagran—es and it can be seen that, for the

given value of d, f‘

a ‘xﬂ(ﬂ)zw(5+1):és’

and fé‘w satisfy the conditions

Tr(8)Tr(5-+1)=CE
of Theorem 5.6, and thus f|$ - e and fo| e
m(B)Tr(B+1) 7 (B)Tm(B+1)
auto-correlation function. Furthermore, the theorem also tells us how we may
pair the functions if further restrictions are made: if a new restricting variable
is not one of the path variables, i.e. is one of the variables in F', then f and f,
both take the same restricting constant in the new pairing; if the new restricting
variable is one of the path variables, i.e. in P;, then the restricting constant in
fa is the 1’s complement of that in f. Thus denote all the restricting variables
with an index in the path P which is less than or equal to 8, by x (so these
variables appear in P;), and denote all restricting variables with index g + 1
or above by x’ (these all appear in F'). Then let ¢ be a binary word of length
compatible with x, ¢’ similarly for x’, and denote the 1’s complement of ¢ by €,
i.e. if ¢ has digits cqo, then € has digits 1 — ¢,. Then from the theorem we get
that f|xx,:cc, and f, have the same auto-correlation, i.e.

n(B)Tw(B+1)=C€
have the same

‘xx’:éc’
A(F| o) (0) = A(Fa| y_c)(0) forall £,
The last case to consider is that of a pair of adjacent restricting variables

when § = 1. Substituting = 1 into equations (5.14) above, and noting that
now path P; is null, we get

q q q
f|$n(1)$n(z)=es =L+ 5 6%m(0) + had + 9&%n(3) + P+ Lo
+ 9+ gr1)€ + gr(2)€
q q q
fa‘wn(l)zn(z)zar =1L+ 5(1 - 6).’1:7T(0) + 5(1 —e)e + §€:E7T(3)
q
+ Pt Lyt o) + 9+ 9r() (1 =€) + grre-
Gathering terms, and noting that —Z = Z mod ¢, ¢ even, these become
q q
f‘wwu)zw(z):ef =L+ 96%m(0) + 9&Tn(3) + P+ Ly

q
+ 9+ Gr2)€ + grr)€ + 566

fa| =L+ %exﬁ(o) + %ewﬂ(g) + P+ Lo

m.,r(l)mﬂ.(z):és

+ 9+ gr2) + gu(y(1 —€) + g(l — e,

which only differ in the constant term, and so by Theorem 1.8 they have the
same auto-correlation. In addition, any further restriction can only be on the
variables in P (we disallowed restriction on (g in this case), and this clearly
also gives functions with the same auto-correlation. Thus in this case we also
have

A(F‘xx’zcc’)(‘g) = A(Fa|xx/:ECI)(£) fOI‘ a.ll f,

but where now x is just ().
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So, in all the above cases we have shown that there is a one-to-one corre-
spondence between the auto-correlations of the restrictions of f and f,, i.e.

AF|_.)(0) = A(Fa| _ ) (0)

for all £ and for some c¢; and c;. Thus the sum

S (AF]_)(0) + AFa|,_)(0) =0, £#£0

C

becomes

23 AF[_ )@ =0, £+0,

and hence

STAF|_ )0 =0, £#£0,

so that the set of restricted vectors of f form a complementary set. Then by
invoking Corollary 5.2 we get that

STAF|_ )@ =0, £#0,

as was to be shown. O

Example 5.8. Let m = 7 and let f be the generalized Boolean function over
Ly
f =2(z5z3 + 2324 + T4T2 + ToT1 + T 120 + ToT6) + To + 35,

so that f is a Golay complementary pair with, for example, f, = f + 2z¢. For
the restriction, pick two adjacent indices on the path, for instance let x = zox4.
Let

Q = 2(z5z3 + 120 + ToT6)

be the quadratic part left following any restriction for the given x. Then vectors
of the four restricted functions

Flayosccoe, = @ +2(comt + c133 + coer) + xo + 35, co,c1 € {0,1},
form a complementary set. Map the indices using
0—~0,1—1,3—2,5—3,6— 4,

to get the compressed Q,

~

Q = 2(z3x2 + x1T0 + ToT4),

and the compressed functions,

'ﬂﬂ?2$4:0061 = Q + 2(comy + c1xo + coer) + o + 33 g, 1 € {0, 1},

the vectors of which also form a complementary set. Each of the vectors in the
set thus has a PMEPR 27! = 4. Theorem 1.27 says that words in the coset

62 + RM,(1,5) have PMEPR at most 227! = 8, since vertices 2 and 3 need to

~

be deleted in Q to leave the path 2(z1zo + zoz4). Thus, as the example in the
previous section, words in the set identified by the theorem have lower PMEPRs
than general words in the coset. O
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5.5 Pairs of Functions with the same Cross-correlation

A simple modification to the functions in Theorem 5.3 produces two pairs of
functions that share the same cross-correlation, but in a non-trivial way:

Corollary 5.9. With the notation as Theorem 5.3, let four functions be defined
as

q
f\x:c:P+L+Gl+gl+§dl
fa\x:d:P+g:ca+L+G2+gg+gd2
Jolye =P+ 530+ L+G1+ g1+ 3da

q
fab‘x:d =P+ %(a:a +xp) + L+ G2+ g2 + §d4

where
di+dy+d3+dys=1 mod 2.

Then the cross-correlations of the pairs are the same at all shifts, i.e.

C’(:F|x:c’ Fa|x:d)(e) o C(Fb‘x:c’ Fab|x:d)(e) = 0’
(@M o1)<e<2m -1

Proof. By the theorem, if d; =0 for 1 = 1,2, 3,4, then
C(F|,__.Fa| ,_4)() = —C(F| __,Fas|,_4)(¢) forall L.

From Theorem 1.8, setting one of the d; to 1 introduces an extraneous ‘—l—%’ on
one side of the corresponding cross-correlation, causing that cross-correlation to
be negated. Since an odd number of the d; are 1, one or other of the cross-
correlations will always be negated, so the minus sign in the above equality
disappears, giving,

C'(F|x:c’ F, |x:d) (E) - C’(Fb|x:c’ Fab|x:d)(£)’
for all £, and in particular for —(2™ — 1) <£< 2™ — 1. O

Example 5.10. Consider a simple unrestricted binary case for m = 7, and take
the following two pairs of functions:

f = xox1 + 122 + T1 + X342 + T3T5
fa = ToT1 + Ir1T9 + 9 + I + TAT5T6 + I5T¢ + 1
fo = Tox1 + T129 + To + T1 + T3T4T6 + T3T5

fab = ToT1 + x129 + T2 + To + T1 + T4X5%6 + T5Z6

where z, = z9 and 7, = xzo. Straightforward computation shows that
C(F,F,)(¢) = C(Fy,Fg)(f). Note that the cross-correlation C(F,, F)(£), ob-
tained by simply reversing and swapping the vectors of f and f,, is the same as
C(F,F,)(¢) by Theorem 1.1, but the equivalent functions are now considerably
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more complicated (due to the fact that the ‘non-path’ functions G; and G2 also
get reversed):

fa = Tox1 + 122 + To + T1 + Tax5%6 + Tax5 + TaTe + x4 + 1
f = ZToT1 +T1T92 + To + Ty + T1 + T3T4Te + T3Ta + T3T5
+ 376 + Taxg + T4 + T5 + T + 1.

5.6 Conclusions

In this chapter it has been shown that ‘splitting up’ a pair of complementary
sequences (constructed by Corollary 1.25) into a number of shorter sequences
results in complementary sets of sequences. Under certain circumstances, doing
this to just a single sequence of a pair also results in a complementary set.
In showing why this works, much use has again been made of the inherent
structure of the path functions that are at the root of the construction of the
complementary pair. It is not known how these sets may be related to those of
[46, 47, 40], but since the sets in the latter are generally constructed by iteratively
interleaving shorter sequences to make longer ones, it seems likely that there may
be a connection, since the restriction and compression techniques used here can
be seen in some respects to be just the reverse of such a process. It would be
an interesting exercise to investigate if there is a connection, for even if there is
one, the description and construction given here could possibly be simpler and
more concise.



Chapter 6

Binary Golay Sequences under
the Inverse Gray Map

6.1 Chapter Overview

The main result of this chapter is to show that a binary Golay sequence (emanat-
ing from the construction of Corollary 1.25) remains a complementary sequence
when mapped to Z4 under the inverse Gray map (Section 6.4). The subset of all
complementary sequences over Z4 (from the construction) which are the images
of a binary complementary sequence is also identified. Section 6.2 defines the
Gray map, its inverse, and some of their properties; their effects on the algebraic
normal form representations of generalized Boolean and Boolean functions, over
Z4 and Zq respectively, are deduced in Section 6.3. A few conclusions are drawn
in the final Section, 6.5.

6.2 Introduction

The Gray map is a mapping from Z4 to Z3, is usually denoted by ¢, and is
defined as:

¢: Ty — 73
0~ 00
1+ 01
2+ 11
3 — 10,

and is clearly a bijection. It finds utility in a variety of situations where a con-
nection between quaternary and binary objects is desirable (e.g. within com-
munications and, more recently, coding theory [20, 48]). (Much of the initial
material in this section is taken from [48, Ch. 3].)

161



Ch6 Complementary Sequences and the Gray map 162

It is useful to define the following three maps «, 8,7 from Z4 to Zo:

The maps a and 8 give the binary expansion of any element of Z4, i.e. for each
T € Ly,
z = az) + 26(x) (6.1)

(this is normally called the ‘2-adic expansion’ of z). Note also that
a(z) + B(z) + y(z) =0 for all x € Zg. (6.2)
The Gray map ¢ can then be expressed in terms of 8 and + as:

#(z) = (B(z),v(z)) for all z € Z4
(= (8(2),B(z) + a(z))).

The maps «, 8,7 and ¢ can be extended to operate on vectors in an obvious
way, as is shown below. We are interested in cases when the vector over Z, is
that associated with a generalized Boolean function. It is seen that under the
action of the Gray map, the length of the resulting vector over Zs is twice that
of the original vector over Z4, and thus the number of variables representing the
associated Boolean function of the image vector is one more than the number
of variables of the generalized Boolean function over Z4. We shall use n’' = o’
as the length of a vector over Z4 from the associated function in m' variables,
and n = 2™ as the length of the resulting vector over Zs from the associated
function in m variables, where n = 2n’ and m = m’ + 1.

Letting a be a vector over Zg, i.e. a = (ag,a1,-.-,0p/—1) € ZZ', we can extend
the maps a, 8,y to ZZ’ by defining

and then extend ¢ as
¢(a) = ((B(a),y(a)) for all a € Z%, (6.3)

and this extended ¢ is also a bijection, from Z} to Z} (where n = 2n').

Since the Gray map is a bijection, it has as inverse the inverse Gray map,
¢ (z,y), from Z2 to Z4. From the definition of ¢, and (6.1) and (6.2), it can
be seen that ¢! is given by

¢ Hz,y) = (z+y mod 2) + 2. (6.4)
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For n even, and now letting a be over Zy, i.e. a = (ap,a1,...,an_1) € Z%, and
denoting the left and right halves of the vector a as

ap = (a0a"'aa'n/2—1)

aR — (an/Q, P ’an_l),

the extension of ¢! to a map from Z% to Z% (n' = ), i.e. the inverse of (6.3),
is:

‘Vl(a) = (¢71(a07an/2)1¢71(a1aan/2+1)7"'7¢71(an/2—17an71))
= ((ao + anjo mod 2) + 2ag, (a1 + a,/941 mod 2) + 2aq,- -,
(anj2—1 4 an-1 mod 2) + 2ay,/5 1)
= (a; +az mod 2) + 2a,. (6.5)
Only the map « is actually an additive group homomorphism: S and +, and
hence ¢, are not. The following lemma shows what the image of the sum of two
vectors under the Gray map is in terms of their individual images and the map
a. Denoting the componentwise multiplication of two vectors a and b by
(ao,---san—1) * (bo, - - -, bnr—1) = (agbo, - - - , @' —1bpr_1),

then we have

Lemma 6.1. For all a,b € ZZ’,

¢(a+b) = ¢(a) + ¢(b) + ¢(2a(a) * a(b)),
where the product 2a(a) x a(b) is taken in Zy.

Proof. It suffices to show that the left and right hand sides of the identity are
the same for all combinations of input values when n’ = 1. The following truth
table shows this for all distinct pairings of the input values:

a b at+b|LHS | ¢(a) b)) ¢(2a(a)*alb)) | RHS
00 0 [(0,0](0,0 (0,0 (0,0) (0,0)
01 1 |(0,1)](0,0) (0,1) (0,0) (0,1)
02 2 |(1,1)](0,0 (1,1) (0,0) (1,1)
0 3 3 |(1,0)](0,0) (1,0) (0,0) (1,0)
112 | (L,1)1(0,1) (0,1) (1,1) (1,1)
1 2 3 [(1,0)0[(0,1) (1,1) (0,0) (1,0)
1.3 0 ](0,0)[(0,1) (1,0) (1,1) (0,0)
2 2 0 |(0,0)](,1) (1,1) (0,0) (0,0)
2 3 1 |(0,1)](1,1) (1,0) (0,0) (0,1)
3 3 2 |(1,1)](1,0 (1,0 (1,1) (1,1)

(Note that in [48] this is deduced as a corollary to some other results, but for
completeness is proved directly here.) O

In the current setting we are also interested in the equivalent result for ¢!,
and this is given in the following lemma.
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Lemma 6.2. For all a,b € Z%, n even,
¢ '(a+b)=¢"(a) + ¢ ' (b) +2((as +ar) * (b, +bg))
where the additions a;, + ar and b, + by are performed mod 2.

Proof. It suffices to show that the left and right hand sides of the identity are
the same for all combinations of input values when n = 2. The following truth
table shows this for all distinct pairings of the input values:

a b a+b|LHS|¢'(a) ¢7'(b) 2(()=()) |RHS
(0,0) (0,0) (0,0) | 0 0 0 0 0
0,1) (0,0) (0,1) | 1 1 0 0 1
0,1) (0,1) (0,0) | 0© 1 1 2 0
(1,1) (0,0) (1,1) | 2 2 0 0 2
(1,1) (0,1) (1,0) | 3 2 1 0 3
(1,1) (1,1) (0,0) | © 2 2 0 0
(1,0) (0,0) (1,0) | 3 3 0 0 3
(1,0) (0,1) (1,1)| 2 3 1 P 2
(1,0) (1,1) (0,1) | 1 3 2 0 1
(1,0) (1,0) (0,0) | 0© 3 3 2 0

O

6.3 The Effect of the Gray Map and Its Inverse on
Algebraic Normal Form

In the next section we require the effect of the inverse Gray map on a Boolean
function which is a path: thus in this section the action of the inverse Gray map
on the algebraic normal form of a Boolean function is established. It is also
useful to know the effect of the Gray map on a generalized Boolean function
over Zg4, so both these cases are now considered in turn.

6.3.1 The inverse Gray map and algebraic normal form

Let f = f(zo,---,ZTm—1) be a Boolean function, in algebraic normal form, of
the m variables xg,...,Zy_1, and let £ = (fo, f1,..., famn_1) be the associated
vector of all its values, with f; = f(ig,%1,--.,%m—1) where (ig,%1,...,%m—1) I8
the binary expansion of i = 0,1,...,2™ — 1. From (6.4) we can take the inverse
Gray map of the pairing f;, f; /2 as

¢~ (fir fisnj2) = (fi + fiyn/2 mod 2) +2f; (6.6)

fori =0,1,...,n/2—1. The values f;,i =0,1,...,n/2—1, may be obtained from
the algebraic normal form of f by setting ,,—1 = 0 and evaluating the resulting
function over all 2™~ combinations of the remaining m’ = m — 1 variables.
Similarly the values fi ./, i = 0,1,... ,n/2 — 1, may be obtained by setting
Tm—1 = 1 in f and evaluating over the same combinations of the remaining
variables. But these values are none other than those of the compressed functions
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of f following its restriction by x,,—1 = 0 and z,,_1 = 1 respectively, as defined
in Section 1.9.5. Thus using the notation established in that section, viz ﬂx:c,
we can extend the notion of the inverse Gray map acting on pairs of elements
and vectors over Zo to that of acting directly on the algebraic normal form of a
function f, and thus equation (6.6) becomes

67N =, o+ Fla .y mod2)+2f], .

which is readily seen to be the functional analogue of equation (6.5) since

fLE/f\

~

fr=1f

|Im_1:0
|:cm_1:1'

In fact since in this case the relabelling of indices in the compression operation
™ after the restriction on z,,_1 is always just an ‘identity’ operation, it is rather
superfluous, and so is dropped on the understanding that functions so obtained
are implicitly just functions in the m — 1 variables xq, ..., Z;,—2. The above is
then

¢~ ) = (fl, o+ fl, ., mod2)+2f .

Note that since the algebraic normal form of a function over Z, is implicitly
taken mod 4, and in general for a,b € {0,1}, a +b mod 2 # a + b mod 4, the
right-hand side of this expression is not very helpful in establishing the algebraic
normal form of a function over Z,. However, in the case when a function, A say,
is just a monomial, simple expressions for the algebraic normal form of ¢~ (h)
in terms of A can be established: if h is a monomial not containing x,,_1, i.e.

im—2

— 00,01
h(zo,...,Tm-1) = zdz] -z, 5,

where iy =0or 1, k =0,1,...m — 2, then we get

¢~ (h) = ¢ (aipatt - 2)m2)

— (glogh ... pim=2 (7 im—2‘
= (xo Iy T2z, _,—0 T %o %1 Tm—2\g,, =1

mod 2)

io ’il im—2
+ 2wy Ty T, g

_ i() 71 im—2 ’i() 21 'im—2 io i1 im—2
= (g} -z s +aal mod 2) + 2zz} -z

m—2 m—2
- 20 .21 Im—2
— 2$0 Ty Ty
= 2(h|xm_1:0)
— 9h,

again on the understanding that we are now regarding the monomial as just a
function of the m — 1 variables zy,. .., ;2.

If A does contain z,,_1, i.e.

_ io Z.7'n—2
h(zo, .. yTm—1) =20 T 5 Ty 1,
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we get

¢~ (h)

-1 1 b —
¢ (a0 T )
mim—2

10
m—2 Tm-1 |zm,1:0

‘rEO A

—_ iO - Z.frn—2
— + zg T2 Tm—1|y, =1 mod 2)

G, gim=2
+ 225 2 5%, ‘mm_lzo

= (0+xé°---:vimj22 mod2)-|—0

m
_ o, dime2
=Ty LTm—2

= ‘.{I,‘m,1:1

where now since h‘w =1 is just 0 or 1, the expression (h‘w mod 2) does

m—1=1
equal (h|z = mod 4).
For example with m = 4, ¢~ (zoze) = 2zox2, which is easily verified directly
from the operations on the vectors, for

X * x2 = (0000010100000101),

which when paired as (6.5) gives

¢_1(X0 * x2) = ¢_1 ((01 0)1 (01 0)1 (01 0)7 (07 0)’ (07 O)’ (13 1)7 (01 0)7 (1’ 1))
— (00000202)

= 2X0 * Xo.

Using similar reasoning we can form the algebraic normal form equivalent of
Lemma 6.2 for the functions f and g:

¢ (f+9) =9 () +¢7 () +2((f],, o+ fl,, -1 mod2)
X (9ly,, =0 T 9lg,, ;=1 mod 2)).
It is easy to verify that for a,b,c,d € {0,1},
2(a+b mod 2)(c+d mod?2)=2(a+b)(c+d) mod4,

and so in this case it is possible to drop the ‘mod 2’s from the expression and
obtain a valid expression for algebraic normal form over Z4, and so this, with
the above results for monomials, can be used to deduce the most general case.

When f does not involve z,,_1, then f|w =0 = f‘w and so if either f or

_1=1"
g does not involve z,,_1 then the last term is identically zero, giving in this case

N f+9) =0 (f)+ 97 (9)- (6.7)

Thus for an f consisting entirely of monomials not dependent on x,,_1, repeated
application of this and the above rules clearly gives

¢~H(f) =21,
where once again the right-hand side is now considered to be over Z4 and only
in the m — 1 variables zg, 1, . .., T;m—_2. Repeated application of these rules also

leads to the most general case, when f consists of a mixture of monomials that
include and exclude the variable z,,_1:
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Theorem 6.3. Let f be a Boolean function in the m wvariables xg,...,ZTm_1.
Partition the algebraic normal form of f into those monomials involving X,
and those not, i.e. if (ig,%1,...,%m—1) 1S the binary expansion of integer i, let
set Iy be the set of those indices i for which i,—1 = 0 and for which monomial
a:f)owzf e :I?Zm 1 has a non-zero coefficient in the algebraic normal form of f, and
similarly let Set I, be those indices for which i;,—1 = 1 and the corresponding
monomial has non-zero coefficient, so write

1
f=1r+f
_ 20 .01 1m 2 20 .01 Im—2
—E:xofcl " +§:$0$1"' Ty T 1-
i€l 1€l

Then the algebraic normal form (over Z4) of the image of f under the inverse
Gray map is

o =2, o+ ()
= 2f0 + (fl‘szlzl)Q'

Proof. First note that since each z; takes just the values 0 or 1, then z; = (x;)
for all . Now use induction on the number of terms in f involving z,, 1, i.e. on
|I]. First suppose that I; contains only one index, i.e |I;| = 1. Then

o ) = (O + 1)
=47 () + o7 ()
+2(f0| 1= O-I-f |a:m 1=1 (f1|$m_1:0+f1‘$m_1:1)
= 2f0 + fl‘xm,1:1
=20+ (Y, )

by the results preceding the theorem for f° and the monomial f!, and since
f 0|z -0 = f 0|:c er Now suppose the result is true when the cardinality of

2

I, is k for some integer k > 1, and consider the case |I;| = k+ 1. Split one index
i’ € I, away from the rest, i.e. write

F=14f
= O+ Z ol - r;zn 5Tm_1 + $0 551 T T
i€y
i
=10+
where f 1" contains k terms. Then
) = O+ HFY)
=7 O+ )+
n n
+2((° + 1) gm0 + O+ 7))
1/ 1/
X(f ‘wm_1:0+f |:Cm_1:1)
_ 0 1 2 1! 1 1!
- 2f + (f ‘mm_lzl) + f ‘mm_lzl + 2(f ‘mm_lzl) (f ‘l‘m_lzl)

+ fY, say,

1
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(using the induction hypothesis)

0 i0 im—2)? ig m—2
=2f"+ E Rl I R XA

1€l

il
2: 'L 2 i G
( J; m— )($00...w7;n__2)
i€l
i
; i 222 ; i ' P
=20+ (3 (ool 3) 42 YD a e an o ali)
ich iAjel
i i
i T2\ 2 9 io Tm—2 N G2
+ (2 3) § :xo T2 )(To " T
1€l
i’
o0 io Tm—2)\2 i0 tm—2 ,.Jo Jm—2
=2f +(§ :(mo m3) +2 E, Ty L9 Ty Ty 2)
1€l 1£jel

which is the result for & + 1, and hence by induction the result is true for all
integers k > 1. O

Example 6.4. Let m = 4 and take the function
f(m) =19+ T1Z9 + T2T3 + Tox2T3-

Then the algebraic normal form of the image of f under the inverse Gray map
is, by the theorem

fl(z) = ¢~ (f(2) = ¢ ((m0 + 2132) + (T233 + TT273))
= 2(zo + z172) + ((woz3 + x0x2$3)|$3:1)2
= 2z + 22129 + (29 + Toz3)?
= 2xo + 2z179 + (11)2)2 + 2x9 - ToTo + (:100302)2
= 2xg + 2z129 + 9 + 22072 + T0T2

= 2x0 + 2z129 + T2 + 3T T2-

Evaluate f at all its points by adding the equivalent vectors:

= (0101010101010101)

x1 * X2 = (0000001100000011)

x3 * x3 = (0000000000001111)

X * X2 * x3 = (0000000000000101)

f = sum mod 2 = (0101011001011100),

which pairing as (6.5) and applying ¢! gives

¢t ((0,0), (1,1),(0,0), (1,1),(0,1),(1,1),(1,0),(0,0)) = (02021230).
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Further, direct calculation from f’, via the equivalent vectors, gives

2x0 = (02020202)
2x1 * x5 = (00000022)
— (00001111)
( )
( )

00000303
f' = sum mod 4 = (02021230),

3X0 * X9 =

this being in agreement with the previous vector, thus confirming that the deriva-
tion of the algebraic normal form is correct. O

6.3.2 The Gray map and algebraic normal form

Let f = f(xg,...,Zm—1) be a generalized Boolean function over Z,4, and in
algebraic normal form, of the m’ = m — 1 variables zy, ..., Z,/_1, and let f be
the associated vector of all its values. From (6.3), the image of the Gray map of
fis
o(f) = (B(£),~(f)),

which will be viewed as a 2™ 11 = 2 dimensional vector over Z;. We require
the algebraic normal form, over Zs, of the Boolean function f’ associated with
this vector, in terms of the original function f over Z,. Since the vector is of
length 2™ L = 2™, the function f’ will necessarily be of m = m' + 1 variables,
SO we expect any algebralc normal form over Zs to involve the variable z,,_1,
in addition to those used over Z4. Extend the notation for S and v so that
B(f) and ~(f) are the algebraic normal forms, over Z,, of the vectors S(f) and
~(f) respectively. Then examination of the vector (B(f),~(f)) shows that the
function f’ must give the values 3(f) when z,, 1 = 0, and the values v(f) when
ZT;m_1 = 1, and thus f’ is given by

= B+ zm—1) + 7(f)Tm-1. (6.8)

The relationships between the algebraic normal forms for 8(f) and v(f) over
Zy and that for f over Z4 are simple enough to establish when f is merely a
monomial, but unfortunately, since neither 8 nor v are homomorphisms, the
relationship for the general case is less straightforward.

Solet h(zg, ..., Tm—1) = Tz’ - cogm= . _1 and consider the monomial c-h, ¢ € Zy,
as a typical term in the algebraic normal form of f. Then since h only takes the
values 0 and 1, from the definitions of the maps «a, 8 and 7, it is clear that

Blc-h) = B(c)h (6.9)
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Substituting into equation (6.8) and evaluating for all values of ¢ gives:

¢(c-h) =Blc-B) A+ zm-1) +7(c- h)Tm—
= B(e)h(1 + zm_1) +v(c)h - Trp_1.

#(0-h) = BO)A(1 + zm—1) + Y(0)h - Zp—1
=0-h(l+Zm-1)+0-h-zp_1=0

¢(3h) = B3)A(1 + zm—1) +Y(3)h - Tm—1
=1-h(l+xm-1)+0-h-zp1=n1+xmn 1)

In summary, the algebraic normal form of the images of the monomials c - h
10 41 bt —1

under the Gray map, where ¢c € Z4 and h = zyz| -~z ", are
$(0) =0
¢(h) =h -1
$(2h) = h
#(3h) = h(1 4+ zp—1)

For example, for m' = 3 and withc =3 and h = 1, ¢(3) = 1+ z,,_1 (note the ‘3’
here represents a function in algebraic normal form, and not just the constant
3!). This is easily verified from the vectors, for

#(3) = ¢(3) = $(3,3,3,3,3,3,3,3)
= ((3,3,3,3,3,3,3,3),7(3,3,3,3,3,3,3,3))
= (1111111100000000)
=14+x,_1-

The functional equivalent of Lemma 6.1 is then

¢(f +9) = o(f) + d(g) + ¢(2a(f)lg)),

where the product 2a(f)a(g) is over Z4. If either f or g consists entirely of
monomials having coeflicient 2, so its values are all either 0 or 2, then since
a(0) = a(2) = 0, then the last term is identically zero, giving in this case

o(f +9) = o(f) + ¢(9)-

Thus for an f consisting entirely of monomials with coefficient 2, repeated ap-
plication of this and the above rules clearly gives

o(f) =1,

but where now the right-hand side is regarded as a function in m = m’ + 1
variables (cf equation (6.7) in the previous section). Repeated application of all
these rules then gives the most general case when f consists of monomials with
all possible coefficients:
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Theorem 6.5. Let f be a generalized Boolean function over Zy4 in the m' vari-
ables xg,...,Tm_1. Partition the algebraic normal form of f into monomi-
als with coefficients 1,2 or 3, i.e. if (4g,91,-..,%m—_1) 18 the binary expansion
of integer z' let set Iy be the set of those indices 1 for which the monomials
arf)ozczf . m, 1 have the coefficient 1, let I be the set of indices for which the
correspondmg monomials have coejﬁczent 2, and I3 for monomials with coeffi-
cient 3, so write

f=2-f241-f'+3. 53

_ i0 .01 m’ 1 %0 .11 m’ 1 %0 .01 -1
—ZE ToTy T —I—E TyTy T +3§ Ty Ty T,

i€l i€l i€l3

(and noting that the superscripts on f are not powers). Representing the mono-
mial wf)oxzf ---x;:;ﬁljll by x*, then the algebraic normal form (over Zs) of the

image of f under the Gray map is

() =f2+ " T + P+ Tper) + Z zh -l

Proof. Use induction on the number of monomials with coefficient either 1 or
3, i.e. on |I; UI3|. First suppose that there is just a single monomial with
coefficient 1, i.e. that f! consists of a single monomial, and that f2 is identically
zero (the argument will work equally well if the roles of f! and f? are reversed).
Then

o(f) = d2f* + f1 +3f%) = (2f* + 1)
= (2f%) + o(f") + ¢(22(2f*)a(f1))
=24+ 1oz,
=+ fana +0+0
=Pt + POt o)+ Y ot eal,

Z’,]'E.Il'UI;;
i#j

using the statements and rules preceding the theorem, and that f3 is zero and
the sum is necessarily empty when |I; U I3| = 1. Now suppose that the result

is true when the cardinality of I} U I5 is k for some integer k£ > 1, and consider
the case |I; U I3| = k + 1. Split one index i’ € I; away from the rest, i.e. write

f=2+f +3f°
=2f2+) 2" +a” +3f°
1€lh
i

=22+ " + Y + 373, say,
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SO fll' + 3f3 contain a total of k terms. Then

o(f) = p2f2 + " + F + 379
= ¢2f2 + Y 313 + () + 6 (2227 + 7 + 31 a(f1)
:f2+f1”'-'5m—1+f3(1+$m—1)+ Z -
4,j€ELHUI3
i,j;éz"
1#£]
+ Y1+ 02022 + 1 4 313 a(fY))

by the induction hypothesis, and we now need to consider the last term in this
expression, the term ¢(2a(2f2 + 1" +3f%)a(f")). Let g and h be generalized
Boolean functions whose algebraic normal forms are

g=>_ g’
h=Y ha'

where the coefficients g;, h; are in Z4, and z* represents a monomial as above.
Then

¢(2a(g)a(n)) = ¢(2a(29z ’)a(Zh z))
=¢(2> Z)E ")) (a is a homomorphism)
=¢(2) z' Za( i)z") (by (6.9) above)

=>.a(g z') -Za( i)z’

since all the coefficients in the polynomial 23" a(g;)z* - 3 a(h;)z* are 2. Thus
we have

¢(2a2f2 + " + 3% a(f1) = 6(2((2f?) + a(FM" + 3F%)) a(f1))

= ¢(2a(fM" + 313 a(fY))
1e1UI3
i

since we know that « of all the coefficients in f 1", 3f% and f 1 will be 1. Thus,
in this case,

() =24t + Y PP+ 2 1)

+ Z 'zl + Z ot - g

4,j €1 UI3 1€ UI3
i\j i’ i
1£]
_ 2 1 3(1 L. d
—f +f '-'Em—l‘l‘f( +~'Em—1)+ z -z,
t,j €11 U3
1£]

which is the result for &k 4+ 1, and hence by induction the result is true for all
integers k > 1. O
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Example 6.6. Let m' = 3 and take the function
f(x) = 2z + 2zox1 + T0 + 21 + 320 T2.

Then the algebraic normal form of the image of f under the Gray map is, by
the theorem

fl(z) = ¢(f($)) = ¢((2$2 + 2z071) + (20 + 71 + 3x0$2))
= (29 + zoz1) + (zo + z1)z3 + Toz2(1 + 23)
+ (o - T1 + T - Tox2 + X1 - TOT2)
= x9 + xox1 + ToT3 + T1T3 + Tox2
+ zox2x3 + Tox1 + ToT2 + ToT1T2

= T2 + ToT3 + T1T3 + ToT2T3 + ToT1Z2-

Evaluate f at all its points by adding the equivalent vectors:

2x, = (00002222)

2x0 * x1 = (00020002)

= (01010101)

= (00110011)

3xo*x2 (00000303)

f = sum mod 4 = (01102231),

and then applying ¢ to this gives

$(0,1,1,0,2,2,3,1) = (8(0,1,1,0,2,2,3,1),7(0,1,1,0,2,2,3,1))
= (0000111001101101).

Calculating all the values of f’ from its vectors gives

= (0000111100001111)

X0 * x3 = (0000000001010101)

x1 * x3 = (0000000000110011)

X0 * X3 * X3 = (0000000000000101)

Xo * X1 * X = (0000000100000001)

' = sum mod 2 = (0000111001101101),

which agrees with the previous vector, thus confirming the derivation of the
algebraic normal form. O

6.4 The Effect of the Inverse Gray Map on a Path

In this section it is shown that a Boolean function which is a path, under the
action of the inverse Gray map, maps to a generalized Boolean function over Z4
that is also a path. That is, a Golay complementary sequence constructed by
Corollary 1.25 remains a complementary sequence when mapped to Z4 by the
inverse Gray map.
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Let f, a function in m > 2 variables, represent a binary Golay sequence
constructed by Corollary 1.25:

m—2 m—1

f = Z Lr(i)Tr(i41) + Z 9 (3) Tr(i) +c, c 9r(5) € ZQ,
i= i=0
and where 7 is some permutation of {0,1,...,m — 1}. The effect of the inverse

Gray map on f varies according to the terms in f involving x,,—;. This must
occur somewhere in the path, so consider the two cases, firstly when z,,_1 is
internal to the path, and then when it is an end point.

Suppose first then that z,, 1 = z,(;), for some j, 1 < j < m — 2 (and so
m > 3), and write f as

f= (Pl +P+L+ C) + ($7r(j,1).7,‘m,1 + Zr(j+1)Tm—1 + gmflxmfl)

where
Jj—2
P = Zxﬂ'(i)xﬂ(i—}—l)
i=0

m—2
P = Z Lr(i) Tm(it1)
i=j+1
m—1
L= Z 9n(5) T (i)
i=0
1#)
and where the bracketting has been used to gather terms not involving/involving
ZTm—1. (Note that P; is null when j = 1, and P, is null when j = m — 2, so both
are null when m = 3, but this does not affect the following argument.) Then,
by Theorem 6.3,
¢71(f) = ¢71 ((Pl +P+ L+ C) + ($7r(j—1)$m—1 + Lr(j+1)Tm—1 + gm—lwm—l))
=2P; + 2P, + 2L + 2c + (xw(j—l) + Tr(j+1) + gm71)2
=2P1 + 2P + 2L + 2¢ + Tr(j_1) + Tr(js1) + Gm—1
+ 20n(j-1)%n(j+1) t 28n(j-1)Im—1 + 20n(j+1)Im—1
=P' 4+ 2L +2c+ (1 +2gm—1)2r(j—1) + (1 + 29m—1)Zr(j+1) + Im-1,

where

P' = 2P + 2x,(j_1)Tr(j11) + 2P

j—2 m—2
=2 Ta(iTa(it1) T 2a(G-)Tn(ir1) T2 D (i) (it
i=0 i=j+1

and it can be seen that this is a function satisfying Corollary 1.25 over Z4. Thus
even though the loss of the variable z,,—1 creates a ‘gap’ in the original path,
the inverse Gray map has the effect of joining the two remaining path segments
back together again.



Ch6 Complementary Sequences and the Gray map 175

Now suppose that z,, 1 is an end point, so let z(,—1) = Tm 1 (the argument
is similar if the other end point is chosen), and write

.f = (P + L+ C) + ($w(m—2)-7f'm—1 + gm—1$m—1),

where
m—3
P = L (i) L (i41)
1=0
m—2
L= )  9xi@)%ra),
i=0

noting that P is null when m = 2. Then, again by Theorem 6.3,
¢_1(f) = ¢_1((P +L+c)+ ('Tﬁ(m—2)xm—1 + gm—1Tm—1))
=2P + 2L+ 2c+ (Tr(m-2) + Gm—1)*
=2P + 2L+ 2c+ xw(m—Q) + gm—1+ 2x7r(m—2)gm—1
=2P +2L+2c+ (14 29m 1)Zr(m-2) + Gm-1,

which, for m > 2, is again seen to satisfy Corollary 1.25—since z,,_1 was an end
point, in this case the path has merely been shortened. When m = 2 and so P
is null, we are left with just a linear term, which being a trivial path means we
must appeal directly to Theorem 1.24 to see that it is in fact a complementary
sequence.

Thus in either case, a binary complementary sequence constructed according
to Corollary 1.25 remains a complementary sequence when mapped up to Z,4 by
the inverse Gray map.

Example 6.7. Let m = 4 and take the function
f=zors + 1123 + 1220

The sequence (vector) associated with this, and the vector of auto-correlation
values are

(0000001101100101), (16,1,0,5,0,—5,0,—-1,0,1,0,1,0,—1,0,—1).
It is complementary to (for example), f+ xy, with sequence and auto-correlation
(0101011000110000), (16,-1,0,-5,0,5,0,1,0,-1,0,—-1,0,1,0,1).
Mapping to Z4 via the inverse Gray map:

fr=¢7"f) = 2132 + (0 + 21)°
=2z1T9 + 29 + 1 + 27071
= 2(zoz1 + z122) + To + Z1,

with associated sequence and auto-correlation

(01100132), (8,1,0,1 +2i,0,—1 — 23,0, —1).
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The function f’ is complementary with (for example), f’ + 2z5, with sequence
and auto-correlation

(01102310), (8,—1,0,—1 — 23,0, 1 + 2i,0,1).
O

From Corollary 1.25, there are m7!2m+1 complementary sequences of length

(m—1)!
2

2™ over Zsg, and there are 4™ complementary sequences of length 2™ 1

over Zg4. Thus there are
(m —1)! m!_..1 (m—=1)
o iym  Tigmdl _ V7 igmigm _ 9
2 2 2 ( m)
= (m —1)12m(2™ " —m)

sequences in Z4 which are not the image under the inverse Gray map of a binary
complementary sequence. The two cases examined above suggest the form of
those sequences over Z,4 which are the image of a binary sequence. However
since the mapping generates linear terms of variables which also appear in the
functions ‘L’, it is perhaps easier to identify, and count, those Z, sequences
which are the image of a binary sequence by constructing sequences over Z4 and
checking that the Gray map takes them to binary complementary sequences. So
let the number of variables over Z4 be m’ = m — 1, m’ > 2. Then a function
over Z,4 representing the first case above is

[ =2P +2L+ g+ gr(j)Tr(j) + Ir(j+1)Tr(j+1)> (6.10)
where
m’'—2
P= ) Ta@)Tn(i+)
i=0
m/—1
L= Ir(i)Tn(i) Ir(i) € 10,1},
A7

and where g € Zy, 0 < j < m' — 2, and gr(j), gn(j+1) € {1,3}. This is thus a
path, plus a pair of linear terms with coefficients either 1 or 3 and corresponding
to a pair of adjacent indices in the path, and the remaining linear terms all have
coefficient 2, and a constant. Then from Theorem 6.5, the effect of the Gray
map on the components of this f are: 2P + 2L simply becomes P + L; since
9r(j) and gr(;j41) are either 1 or 3, the cross-term . (;)T(j11) is always present;
when gy = 1 we get Tr(jyTm-1, and gr;) = 3 gives T (j)(1 + Ty, 1), which
can be represented as ﬂ(gﬂ(j))xﬂ(j) + Ty (j)Tm—1, and similarly for g, 11); g =1
gives 1-xy,_1, g = 2 gives just 1, and g = 3 gives 1 - (1 + zy,_1), which can
be represented as 5(g) + a(g)zm,m—1; in addition when ¢ = 1 or 3, we get the

cross-term 1z (), represented as a(g)z(;), and similarly for 2, ;). Thus the
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binary image is

¢(f) =P+ L+ B(g) + alg)zm—1 + a(9)Tx(j) + a(g)Tx(j+1)
+ T () Tr(i+1) T BIn(5))Ba(i) + Ta(s) Tm1
+ B(gn(+1)) (1) T Ta(j41)Tm1
=P'+ L+ B(g) + a(9)zm—1 + (a(g) + B(9r())) Tr()
+ (e9) + B(gr(j+1))) Tr(j+1)s

where

Z Ta(@)Tr(i+1) T Tu(j)Tm—1 T Tr(j1)Tm—1-

z#]

Note the effect of the ‘1 or 3’ coefficients on the linear terms is to elongate
the path by removing the ;)T ;1) term and replace it with z;(;yzm—1 and
Tr(j+1)Tm—1, thus giving a function which does satisfy Corollary 1.25. Also note
that this is reason that we cannot tolerate any other linear terms with a 1 or 3
coefficient, as they would generate unwanted extraneous second order terms in

the binary function. Since there are mT” distinct paths of m/ variables, 2?2 ways

to pick g, gm' =2 ways to construct L, m' — 1 values for j, and 22 ways to pick

either 1 or 3 for the linear terms, there are a total of

I' 7 I! !
%22.2’" 2! —1)22 = mT(m' — 7)™ +2

ways to construct functions over Z4 given by (6.10).

A function over Z, representing the second case above (when z,,_1 was an
end point in the binary path) is

f=2P+2L+4+g+ Ir(5)Tr(j)s (6.11)

where

m' -2
P= 3 Za(Ta(it1)
=0

~

!

3

—1
Ir()Tr) 9r@) € 10,1},

=0
z;éa

L

and where g € Zy4, j = 0 or m' — 1, and g,(;) € {1,3}. This is thus a path, plus
one of the end points with coefﬁment 1or 3 and the remaining linear terms all
have coefficient 2, and a constant. Then from Theorem 6.5 the binary image of
this is

¢(f) =P+ L+ 5(9) + a(g)xm—l + a( )xw(]) + Lr(5)Tm—1 + IB(QW ) w(J)
= P'+ L+ B(g) + a(9)zm 1+ (alg) + B(9x(j))) Tr(s)»
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where
m'—2
P'= Z Tr(i)Tr(i+1) T Tu(j)Tm—1-
i=0

This time the path is elongated by the addition of z,(;)Zm—1, and again we get
a function which satisfies Corollary 1.25. Again, there are mT" distinct paths of

m' variables, 22 ways to pick g, om' ~1 ways to construct L, 2 values for j, and
2 ways to pick either 1 or 3 for the end point, and so there are a total of

mTI!QQ-lel.Z.Z = m_l!gm'+3

ways to construct functions over Z, given by (6.11). Thus the total of both these
kinds of function is

m—I!(m’ —1)2m'+2 4 M gt 4y _ (m! — 1+ 2)7"—I!2T"’+2
2 2 2
— Mgﬁ-ﬂ
2
— E!Qm"'l
2 b

where m = m/ + 1, and this total is the number of complementary binary se-
quences, and thus those sequences over Z,4 that are the image under the inverse
Gray map of a binary complementary sequence are precisely the functions con-
structed in (6.10) and (6.11).

6.5 Conclusions

Given the algebraic normal form of a Boolean function f over Zs, some simple
rules have been deduced which show how to establish the algebraic normal form
of the function that results when f is mapped up to Z4 using the inverse Gray
map. Then using the very specific form for a binary complementary sequence
given by Corollary 1.25, it has been shown that this sequence remains a comple-
mentary sequence when it is mapped to Z,4 by the inverse Gray map. In addition
to the results given here, a variety of attempts were made to try and show that
any binary complementary sequence (i.e without using the construction of the
corollary) might always map to a complementary sequence over Z,4, but unfor-
tunately these were not successful. However it is still thought that it may be
possible to show this.

The ways in which complementary sequences constructed by Corollary 1.25
share the same auto-correlation function is due to those given by either of The-
orems 1.1 or 1.8 (namely reversing the sequence or adding a constant, or both).
For sequences over Zsnr, as h increases, and along with it the order of the root
of unity involved in the calculation of auto-correlation, the possible mechanisms
which cause two sequences to share the same auto-correlation function also in-
crease. Thus it is possible to form complementary pairs in ways other than the
‘standard’ ones given by Corollary 1.25: this was noted in [11, p5], and they
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gave an example over Zy4. It is not too hard to show, using Theorem 6.3, that
two binary functions forming a complementary pair in a standard way given by
the corollary, when mapped to Z4, still form a standard complementary pair.
Thus any ‘non-standard’ pairing over Z4 cannot be between sequences which are
the images of binary complementary sequences. The example given in [11] was
the following:

Any of the 8 sequences from the functions in set A form a complementary pair
with those in B; similarly for A’ and B’; in addition, sequences in A and A’
share the same auto-correlation function, and similarly for B and B’:

A= {2(zoz1 + z122) + 1, 2(z0x1 + T1Z2) + 220 + 222 + €1 : €1 € Za}
B = {2(zoz1 + z122) + 220 + C2, 2(T0T1 + T122) + 222 + C2 : C2 € Ly}
A" = {2(z119 + oT2) + 371 + T0 + C3,
2(z129 + ToT2) + T1 + 310 + C3 1 c3 € Ly}
B' = {2(z179 + zo12) + T1 + 70 + €4
2(z122 + Tow2) + 3x1 + 3T0 + €4 & s € La}

Clearly none of these functions is of the form (6.10) or (6.11). (Note: in [11],
the indices run from 1 to m, and also the example there contained an error—the
sequences in the set A’ did not in fact have the auto-correlation stated.) The
results in this chapter may be of potential use in analysing what causes such
new pairings, particularly by examining the behaviour of the corresponding two
pairs of binary sequences when mapped down to Zs by the Gray map.



Summary and Conclusion

In this thesis the properties and features of the technique of restriction, intro-
duced in [32, 33], have been expanded and exploited, their usefulness having
been demonstrated by successfully combining them throughout the thesis with
the algebraic normal form representation of generalized Boolean functions, to
produce simple descriptions of functions whose cross- and auto-correlations are
of the same, or opposite, sense. These results have then been used to:

prove that Conjecture 1 (of [32]) is true in some special cases involving at
most 2 isolated vertices,

produce an improvement in the size of (i.e. reduce) the complementary
sets given by Theorem 1.27 for functions which consist of path segments,
and which enable the construction of functions which satisfy the bound of
Conjecture 1 for an arbitrary number of isolated vertices,

produce a new lower limit on the PMEPR of the coset of certain binary
functions, from which examples with 3 or more isolated vertices have been
constructed which exceed the bound of Conjecture 1, thus showing that it
cannot be true in general,

construct complementary sets based on complementary sequences and
pairs, which may often identify a subset of the coset of the function con-
cerned, words within which have lower PMEPRs than that given by The-
orem 1.27,

show that binary complementary pairs (given by the construction of Corol-
lary 1.25) remain complementary pairs when mapped to Z4 by the inverse
Gray map.

Much of this comes about as a direct result of the structure of the path functions
which are at the root of the construction of the complementary pairs given
by Corollary 1.25, thus emphasizing the contribution made by such a simple
description.

Some possible avenues for further work could be:

could the rank of the quadratic form, for the binary case, be incorporated
into Conjecture 1 in some way so as to improve it?

can the methods of Chapter 4 be extended to account for the peaks in the
power seen either side of ¢ = § (and other values of t)? (As illustrated in
the figures at the end of that chapter.)
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- do the complementary sets constructed in Chapter 5 tie in with any of the
constructions of [46, 47] or [40]?

- is it possible to show that a complementary pair over Zs remains a com-
plementary pair over Z4 under the inverse Gray map without recourse to
the specific construction of Corollary 1.257

- can a simple description be found for those functions over Z,, mentioned
in Section 6.5, which share the same auto-correlation function in a ‘non-
standard’ way 7 (Indeed the same comment applies to those binary func-
tions mentioned in Section 3.6.)

(Reference [34] also contains a list of problems connected with this subject area.)



Bibliography

[1]

[10]

[11]

[12]

T.H.Andres and R.G.Stanton, Golay Sequences, In Combinatorial Maths -
Proc. of 5" Australian Conf., Melbourne, 1976. Lecture Notes in Maths vol
622 1977 pp44-54

E.F.Assmus and J.D.Key, Designs and their Codes, Cambridge University
Press, 1992

N.L.Biggs, Discrete Mathematics, Oxford University Press, Revised Edi-
tion, 1989

J.A.C.Bingham, Multicarrier Modulation for Data Transmission: An Idea
Whose Time Has Come, IEEE Comms. Magazine, vol 28, pp5-14, May
1990

S.Boyd, Multitone Signals with Low Crest Factor, IEEE Trans. Circuits
and Systems, CAS-33(1), pp1018-1022, Oct 1986

S.Z.Budisin, New Complementary Pairs of Sequences, Electronics Letters,
26(13), pp881-883 Jun 1990

P.J.Cameron and J.H.van Lint, Designs ,Graphs, Codes and their Links,
Cambridge University Press, 1991

M.W.Cammarano and M.L.Walker, Integer Maxima in Power Envelopes
of Golay Codewords, Technical report, University of Richmond, VA, USA,
1997

L.J.Cimini, Analysis and Simulation of a Digital Mobile Channel Using
Orthogonal Frequency Division Multiplexing, IEEE Trans. Comms. COM-
33(7), pp665—675, Jul 1985

J.A.Davis and J.Jedwab, Peak-to-mean power control and error correc-
tion for OFDM transmission using Golay sequences and Reed-Muller codes,
Electronics Letters, 33(4), pp267-268 Feb 1997

J.A.Davis and J.Jedwab, Peak-to-mean power control in OFDM, Golay
complementary sequences and Reed-Muller codes, HP Laboratories Tech-
nical Report HPL-97-158, Bristol, Dec 1997

J.A.Davis and J.Jedwab, Peak-to-Mean Power Control in OFDM, Golay
Complementary Sequences and Reed-Muller Codes, IEEE Trans. Info. The-
ory I'T-45(7), pp2397-2417, Nov 1999

182



Bibliography 183

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S.Eliahou, M.Kervaire and B.Saffari, On Golay Polynomial Pairs, Advances
in Applied Mathematics 12, pp235-292, 1991

P.Fan and M.Darnell, Sequence Design for Communications Applications,
Research Studies Press Ltd., 1996

M.Friese, Multicarrier modulation with low peak-to-average power ratio,
FElectronics Letters 32, pp713-714, Apr 1996

M.Friese, Multitone Signals with Low Crest Factor, IEEE Trans. Comms.
45(10) pp1338-1344, Oct 1997

D.R.Gimlin and C.R.Patisaul, On Minimizing the Peak-to-Average Power
Ration for the Sum of N Sinusoids, IEEE Trans. Comms. 41(4), pp631-635,
Apr 1993

M.J.E.Golay, Complementary Series, IRE Trans. Info. Theory IT-7, pp82—
87, Apr 1961

L.J.Greenstein and P.J.Fitzgerald, Phasing Multitone Signals to Minimize
Peak Factors, IEEE Trans. Comms. COM-29(7), pp1072-1074, Jul 1981

A.R.Hammons, P.V.Kumar, A.R.Calderbank, N.J.A.Sloane and P.Sole,
The Zg4-Linearity of Kerdock, Preparata, Goethals, and Related Codes,
IEEE Trans. Info. Theory IT-40(2), pp301-319, Mar 1994

R.Hill, A First Course in Coding Theory, Oxford University Press, 1986

A E.Jones, T.A.Wilkinson and S.K.Barton, Block coding scheme for re-
duction of peak to mean envelope power ratio of multicarrier transmission
schemes, Electronics Letters, 30, pp2098-2099, Dec 1994

X.Li and J.A.Ritcey, M-sequences for OFDM peak-to-average power ratio
reduction and error correction, Electronics Letters 33, pp554-555, Mar 1997

J.H.van Lint, Introduction to Coding Theory, Springer Verlag, Second Edi-
tion 1992

F.J.MacWilliams and N.J.A.Sloane, The Theory of Error-Correcting Codes,
North-Holland, 1977

S.Narahashi and T.Nojima, A New Phasing Scheme for Multitone Signal
Systems to Reduce Peak-to-Average Power Ratio, Flectronics and Comms.
in Japan, part 1, vol 80, No. 1, pp89-99, 1997

R.D.J.van Nee, OFDM Codes for Peak-to-Average Power Reduction and
Error Correction, In Proc. IEEE Globecomm 1996, London, pp740-744,
Nov 1996

D.J.Newman, An L! Extremal Problem for Polynomials, Proc. Amer. Math.
Soc vol 16, pp1287-1290, 1965

J.E.M.Nilsson, Spectrum and Waveform Relations of Multicarrier Commu-
nications, In Proc. IEEE MILCOM 1996, McLean, Virginia 1996



Bibliography 184

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H.Ochiai and H.Imai, Block Coding Scheme Based on Complementary Se-
quences for Multicarrier Signals, IEICE Trans. Fundamentals vol E80-A,
No. 11, pp2136-2143, Nov 1997

E.van der Ouderaa, J.Schoukens and J.Renneboog, Comments on “Multi-
tone Signals with Low Crest Factor”, IEEE Trans. Circuits and Systems
CAS-34(9), ppl125-1127, Sep 1987

K.G.Paterson, Generalised Reed-Muller Codes and Power Control in
OFDM, HP Laboratories Technical Report HPL-98-21, Bristol, Feb 1998

K.G.Paterson, Generalised Reed-Muller Codes and Power Control in
OFDM Modulation, HP Laboratories Technical Report HPL-98-57, Bris-
tol, Mar 1998

K.G.Paterson, Generalised Reed-Muller Codes and Power Control in
OFDM Modulation, IEEE Trans. Info. Theory IT-46(1), ppl104-120, Jan
2000

V.S.Pless and W.C.Huffman (eds.), Handbook of Coding Theory, Else-
vier,1998

B.M.Popovic, Synthesis of Power Efficient Multitone Signals with Flat Am-
plitude Spectrum, IEEE Trans. Comms. 39(7), pp1031-1033, July 1991

W.Rudin, Some Theorems on Fourier Coefficients, Proc. Amer. Math. Soc.,
vol 10, pp855-859, 1959

R.A.Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag,
1986

M.R.Schroeder, Synthesis of Low-Peak-Factor Signals and Binary Se-
quences With Low Autocorrelation, IEEFE Trans. Info. Theory I'T-16, pp85—
89, 1970

B.P.Schweitzer, Generalised Complementary Code Sets, PhD Thesis, Uni-
versity of California, Los Angeles, California, 1971

G.J.Simmons (ed.) Contemporary Cryptology: The Science of Information
Integrity IEEE Press, 1992

R.Sivaswamy, Multiphase Complementary Codes, IEEE Trans. Info. The-
ory IT-24(5), pp546-552, Sept 1978

F.G.Stremler, Introduction to Communication Systems, Addison-Wesley,
Second Edition, 1982

C.Tellambura, Use of m-sequences for OFDM peak-to-average power ratio
reduction, Electronics Letters 33, pp1300-1301, Jul 1997

C.Tellambura, Upper bound on peak factor of N-multiple carriers, Flectron-
ics Letters 33, pp1608-1609, Sep 1997



Bibliography 185

[46] C-C.Tseng and C.L.Liu, Complementary Sets of Sequences, IEEE Trans.
Info. Theory IT-18(5), pp644-652, Sept 1972

[47] C-C.Tseng and C.L.Liu, Complementary Sets of Sequences, IBM Thomas
J. Watson Research Center, Yorktown Heights, N.Y., Report RC 3397, Apr
20, 1971

[48] Z-X. Wan, Quaternary Codes, World Scientific, 1997

[49] D.Wulich, Reduction of peak to mean ratio of multicarrier modulation using
cyclic coding, Electronics Letters 32, pp432-433, Feb 1996



